Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcpr GIF version

Theorem bdcpr 15625
Description: The pair of two setvars is bounded. (Contributed by BJ, 16-Oct-2019.)
Assertion
Ref Expression
bdcpr BOUNDED {𝑥, 𝑦}

Proof of Theorem bdcpr
StepHypRef Expression
1 bdcsn 15624 . . 3 BOUNDED {𝑥}
2 bdcsn 15624 . . 3 BOUNDED {𝑦}
31, 2bdcun 15616 . 2 BOUNDED ({𝑥} ∪ {𝑦})
4 df-pr 3630 . 2 {𝑥, 𝑦} = ({𝑥} ∪ {𝑦})
53, 4bdceqir 15598 1 BOUNDED {𝑥, 𝑦}
Colors of variables: wff set class
Syntax hints:  cun 3155  {csn 3623  {cpr 3624  BOUNDED wbdc 15594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-17 1540  ax-ial 1548  ax-ext 2178  ax-bd0 15567  ax-bdor 15570  ax-bdeq 15574  ax-bdsb 15576
This theorem depends on definitions:  df-bi 117  df-clab 2183  df-cleq 2189  df-clel 2192  df-un 3161  df-sn 3629  df-pr 3630  df-bdc 15595
This theorem is referenced by:  bdctp  15626  bdop  15629
  Copyright terms: Public domain W3C validator