Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcpr GIF version

Theorem bdcpr 13753
Description: The pair of two setvars is bounded. (Contributed by BJ, 16-Oct-2019.)
Assertion
Ref Expression
bdcpr BOUNDED {𝑥, 𝑦}

Proof of Theorem bdcpr
StepHypRef Expression
1 bdcsn 13752 . . 3 BOUNDED {𝑥}
2 bdcsn 13752 . . 3 BOUNDED {𝑦}
31, 2bdcun 13744 . 2 BOUNDED ({𝑥} ∪ {𝑦})
4 df-pr 3583 . 2 {𝑥, 𝑦} = ({𝑥} ∪ {𝑦})
53, 4bdceqir 13726 1 BOUNDED {𝑥, 𝑦}
Colors of variables: wff set class
Syntax hints:  cun 3114  {csn 3576  {cpr 3577  BOUNDED wbdc 13722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-ial 1522  ax-ext 2147  ax-bd0 13695  ax-bdor 13698  ax-bdeq 13702  ax-bdsb 13704
This theorem depends on definitions:  df-bi 116  df-clab 2152  df-cleq 2158  df-clel 2161  df-un 3120  df-sn 3582  df-pr 3583  df-bdc 13723
This theorem is referenced by:  bdctp  13754  bdop  13757
  Copyright terms: Public domain W3C validator