Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcpr GIF version

Theorem bdcpr 16006
Description: The pair of two setvars is bounded. (Contributed by BJ, 16-Oct-2019.)
Assertion
Ref Expression
bdcpr BOUNDED {𝑥, 𝑦}

Proof of Theorem bdcpr
StepHypRef Expression
1 bdcsn 16005 . . 3 BOUNDED {𝑥}
2 bdcsn 16005 . . 3 BOUNDED {𝑦}
31, 2bdcun 15997 . 2 BOUNDED ({𝑥} ∪ {𝑦})
4 df-pr 3650 . 2 {𝑥, 𝑦} = ({𝑥} ∪ {𝑦})
53, 4bdceqir 15979 1 BOUNDED {𝑥, 𝑦}
Colors of variables: wff set class
Syntax hints:  cun 3172  {csn 3643  {cpr 3644  BOUNDED wbdc 15975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-17 1550  ax-ial 1558  ax-ext 2189  ax-bd0 15948  ax-bdor 15951  ax-bdeq 15955  ax-bdsb 15957
This theorem depends on definitions:  df-bi 117  df-clab 2194  df-cleq 2200  df-clel 2203  df-un 3178  df-sn 3649  df-pr 3650  df-bdc 15976
This theorem is referenced by:  bdctp  16007  bdop  16010
  Copyright terms: Public domain W3C validator