Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcpr GIF version

Theorem bdcpr 15006
Description: The pair of two setvars is bounded. (Contributed by BJ, 16-Oct-2019.)
Assertion
Ref Expression
bdcpr BOUNDED {𝑥, 𝑦}

Proof of Theorem bdcpr
StepHypRef Expression
1 bdcsn 15005 . . 3 BOUNDED {𝑥}
2 bdcsn 15005 . . 3 BOUNDED {𝑦}
31, 2bdcun 14997 . 2 BOUNDED ({𝑥} ∪ {𝑦})
4 df-pr 3613 . 2 {𝑥, 𝑦} = ({𝑥} ∪ {𝑦})
53, 4bdceqir 14979 1 BOUNDED {𝑥, 𝑦}
Colors of variables: wff set class
Syntax hints:  cun 3141  {csn 3606  {cpr 3607  BOUNDED wbdc 14975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1457  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-4 1520  ax-17 1536  ax-ial 1544  ax-ext 2170  ax-bd0 14948  ax-bdor 14951  ax-bdeq 14955  ax-bdsb 14957
This theorem depends on definitions:  df-bi 117  df-clab 2175  df-cleq 2181  df-clel 2184  df-un 3147  df-sn 3612  df-pr 3613  df-bdc 14976
This theorem is referenced by:  bdctp  15007  bdop  15010
  Copyright terms: Public domain W3C validator