Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcpr GIF version

Theorem bdcpr 15844
Description: The pair of two setvars is bounded. (Contributed by BJ, 16-Oct-2019.)
Assertion
Ref Expression
bdcpr BOUNDED {𝑥, 𝑦}

Proof of Theorem bdcpr
StepHypRef Expression
1 bdcsn 15843 . . 3 BOUNDED {𝑥}
2 bdcsn 15843 . . 3 BOUNDED {𝑦}
31, 2bdcun 15835 . 2 BOUNDED ({𝑥} ∪ {𝑦})
4 df-pr 3640 . 2 {𝑥, 𝑦} = ({𝑥} ∪ {𝑦})
53, 4bdceqir 15817 1 BOUNDED {𝑥, 𝑦}
Colors of variables: wff set class
Syntax hints:  cun 3164  {csn 3633  {cpr 3634  BOUNDED wbdc 15813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-4 1533  ax-17 1549  ax-ial 1557  ax-ext 2187  ax-bd0 15786  ax-bdor 15789  ax-bdeq 15793  ax-bdsb 15795
This theorem depends on definitions:  df-bi 117  df-clab 2192  df-cleq 2198  df-clel 2201  df-un 3170  df-sn 3639  df-pr 3640  df-bdc 15814
This theorem is referenced by:  bdctp  15845  bdop  15848
  Copyright terms: Public domain W3C validator