Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcpr GIF version

Theorem bdcpr 14811
Description: The pair of two setvars is bounded. (Contributed by BJ, 16-Oct-2019.)
Assertion
Ref Expression
bdcpr BOUNDED {𝑥, 𝑦}

Proof of Theorem bdcpr
StepHypRef Expression
1 bdcsn 14810 . . 3 BOUNDED {𝑥}
2 bdcsn 14810 . . 3 BOUNDED {𝑦}
31, 2bdcun 14802 . 2 BOUNDED ({𝑥} ∪ {𝑦})
4 df-pr 3601 . 2 {𝑥, 𝑦} = ({𝑥} ∪ {𝑦})
53, 4bdceqir 14784 1 BOUNDED {𝑥, 𝑦}
Colors of variables: wff set class
Syntax hints:  cun 3129  {csn 3594  {cpr 3595  BOUNDED wbdc 14780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-4 1510  ax-17 1526  ax-ial 1534  ax-ext 2159  ax-bd0 14753  ax-bdor 14756  ax-bdeq 14760  ax-bdsb 14762
This theorem depends on definitions:  df-bi 117  df-clab 2164  df-cleq 2170  df-clel 2173  df-un 3135  df-sn 3600  df-pr 3601  df-bdc 14781
This theorem is referenced by:  bdctp  14812  bdop  14815
  Copyright terms: Public domain W3C validator