Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcpr GIF version

Theorem bdcpr 15433
Description: The pair of two setvars is bounded. (Contributed by BJ, 16-Oct-2019.)
Assertion
Ref Expression
bdcpr BOUNDED {𝑥, 𝑦}

Proof of Theorem bdcpr
StepHypRef Expression
1 bdcsn 15432 . . 3 BOUNDED {𝑥}
2 bdcsn 15432 . . 3 BOUNDED {𝑦}
31, 2bdcun 15424 . 2 BOUNDED ({𝑥} ∪ {𝑦})
4 df-pr 3626 . 2 {𝑥, 𝑦} = ({𝑥} ∪ {𝑦})
53, 4bdceqir 15406 1 BOUNDED {𝑥, 𝑦}
Colors of variables: wff set class
Syntax hints:  cun 3152  {csn 3619  {cpr 3620  BOUNDED wbdc 15402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-17 1537  ax-ial 1545  ax-ext 2175  ax-bd0 15375  ax-bdor 15378  ax-bdeq 15382  ax-bdsb 15384
This theorem depends on definitions:  df-bi 117  df-clab 2180  df-cleq 2186  df-clel 2189  df-un 3158  df-sn 3625  df-pr 3626  df-bdc 15403
This theorem is referenced by:  bdctp  15434  bdop  15437
  Copyright terms: Public domain W3C validator