Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdcpr | GIF version |
Description: The pair of two setvars is bounded. (Contributed by BJ, 16-Oct-2019.) |
Ref | Expression |
---|---|
bdcpr | ⊢ BOUNDED {𝑥, 𝑦} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdcsn 13752 | . . 3 ⊢ BOUNDED {𝑥} | |
2 | bdcsn 13752 | . . 3 ⊢ BOUNDED {𝑦} | |
3 | 1, 2 | bdcun 13744 | . 2 ⊢ BOUNDED ({𝑥} ∪ {𝑦}) |
4 | df-pr 3583 | . 2 ⊢ {𝑥, 𝑦} = ({𝑥} ∪ {𝑦}) | |
5 | 3, 4 | bdceqir 13726 | 1 ⊢ BOUNDED {𝑥, 𝑦} |
Colors of variables: wff set class |
Syntax hints: ∪ cun 3114 {csn 3576 {cpr 3577 BOUNDED wbdc 13722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-ext 2147 ax-bd0 13695 ax-bdor 13698 ax-bdeq 13702 ax-bdsb 13704 |
This theorem depends on definitions: df-bi 116 df-clab 2152 df-cleq 2158 df-clel 2161 df-un 3120 df-sn 3582 df-pr 3583 df-bdc 13723 |
This theorem is referenced by: bdctp 13754 bdop 13757 |
Copyright terms: Public domain | W3C validator |