Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcpr GIF version

Theorem bdcpr 16234
Description: The pair of two setvars is bounded. (Contributed by BJ, 16-Oct-2019.)
Assertion
Ref Expression
bdcpr BOUNDED {𝑥, 𝑦}

Proof of Theorem bdcpr
StepHypRef Expression
1 bdcsn 16233 . . 3 BOUNDED {𝑥}
2 bdcsn 16233 . . 3 BOUNDED {𝑦}
31, 2bdcun 16225 . 2 BOUNDED ({𝑥} ∪ {𝑦})
4 df-pr 3673 . 2 {𝑥, 𝑦} = ({𝑥} ∪ {𝑦})
53, 4bdceqir 16207 1 BOUNDED {𝑥, 𝑦}
Colors of variables: wff set class
Syntax hints:  cun 3195  {csn 3666  {cpr 3667  BOUNDED wbdc 16203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-17 1572  ax-ial 1580  ax-ext 2211  ax-bd0 16176  ax-bdor 16179  ax-bdeq 16183  ax-bdsb 16185
This theorem depends on definitions:  df-bi 117  df-clab 2216  df-cleq 2222  df-clel 2225  df-un 3201  df-sn 3672  df-pr 3673  df-bdc 16204
This theorem is referenced by:  bdctp  16235  bdop  16238
  Copyright terms: Public domain W3C validator