![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdcpr | GIF version |
Description: The pair of two setvars is bounded. (Contributed by BJ, 16-Oct-2019.) |
Ref | Expression |
---|---|
bdcpr | ⊢ BOUNDED {𝑥, 𝑦} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdcsn 14810 | . . 3 ⊢ BOUNDED {𝑥} | |
2 | bdcsn 14810 | . . 3 ⊢ BOUNDED {𝑦} | |
3 | 1, 2 | bdcun 14802 | . 2 ⊢ BOUNDED ({𝑥} ∪ {𝑦}) |
4 | df-pr 3601 | . 2 ⊢ {𝑥, 𝑦} = ({𝑥} ∪ {𝑦}) | |
5 | 3, 4 | bdceqir 14784 | 1 ⊢ BOUNDED {𝑥, 𝑦} |
Colors of variables: wff set class |
Syntax hints: ∪ cun 3129 {csn 3594 {cpr 3595 BOUNDED wbdc 14780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 ax-17 1526 ax-ial 1534 ax-ext 2159 ax-bd0 14753 ax-bdor 14756 ax-bdeq 14760 ax-bdsb 14762 |
This theorem depends on definitions: df-bi 117 df-clab 2164 df-cleq 2170 df-clel 2173 df-un 3135 df-sn 3600 df-pr 3601 df-bdc 14781 |
This theorem is referenced by: bdctp 14812 bdop 14815 |
Copyright terms: Public domain | W3C validator |