Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcpr GIF version

Theorem bdcpr 13906
Description: The pair of two setvars is bounded. (Contributed by BJ, 16-Oct-2019.)
Assertion
Ref Expression
bdcpr BOUNDED {𝑥, 𝑦}

Proof of Theorem bdcpr
StepHypRef Expression
1 bdcsn 13905 . . 3 BOUNDED {𝑥}
2 bdcsn 13905 . . 3 BOUNDED {𝑦}
31, 2bdcun 13897 . 2 BOUNDED ({𝑥} ∪ {𝑦})
4 df-pr 3590 . 2 {𝑥, 𝑦} = ({𝑥} ∪ {𝑦})
53, 4bdceqir 13879 1 BOUNDED {𝑥, 𝑦}
Colors of variables: wff set class
Syntax hints:  cun 3119  {csn 3583  {cpr 3584  BOUNDED wbdc 13875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-17 1519  ax-ial 1527  ax-ext 2152  ax-bd0 13848  ax-bdor 13851  ax-bdeq 13855  ax-bdsb 13857
This theorem depends on definitions:  df-bi 116  df-clab 2157  df-cleq 2163  df-clel 2166  df-un 3125  df-sn 3589  df-pr 3590  df-bdc 13876
This theorem is referenced by:  bdctp  13907  bdop  13910
  Copyright terms: Public domain W3C validator