![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdcpr | GIF version |
Description: The pair of two setvars is bounded. (Contributed by BJ, 16-Oct-2019.) |
Ref | Expression |
---|---|
bdcpr | ⊢ BOUNDED {𝑥, 𝑦} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdcsn 15005 | . . 3 ⊢ BOUNDED {𝑥} | |
2 | bdcsn 15005 | . . 3 ⊢ BOUNDED {𝑦} | |
3 | 1, 2 | bdcun 14997 | . 2 ⊢ BOUNDED ({𝑥} ∪ {𝑦}) |
4 | df-pr 3613 | . 2 ⊢ {𝑥, 𝑦} = ({𝑥} ∪ {𝑦}) | |
5 | 3, 4 | bdceqir 14979 | 1 ⊢ BOUNDED {𝑥, 𝑦} |
Colors of variables: wff set class |
Syntax hints: ∪ cun 3141 {csn 3606 {cpr 3607 BOUNDED wbdc 14975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1457 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-4 1520 ax-17 1536 ax-ial 1544 ax-ext 2170 ax-bd0 14948 ax-bdor 14951 ax-bdeq 14955 ax-bdsb 14957 |
This theorem depends on definitions: df-bi 117 df-clab 2175 df-cleq 2181 df-clel 2184 df-un 3147 df-sn 3612 df-pr 3613 df-bdc 14976 |
This theorem is referenced by: bdctp 15007 bdop 15010 |
Copyright terms: Public domain | W3C validator |