Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdctp Unicode version

Theorem bdctp 16235
Description: The unordered triple of three setvars is bounded. (Contributed by BJ, 16-Oct-2019.)
Assertion
Ref Expression
bdctp  |- BOUNDED  { x ,  y ,  z }

Proof of Theorem bdctp
StepHypRef Expression
1 bdcpr 16234 . . 3  |- BOUNDED  { x ,  y }
2 bdcsn 16233 . . 3  |- BOUNDED  { z }
31, 2bdcun 16225 . 2  |- BOUNDED  ( { x ,  y }  u.  {
z } )
4 df-tp 3674 . 2  |-  { x ,  y ,  z }  =  ( { x ,  y }  u.  { z } )
53, 4bdceqir 16207 1  |- BOUNDED  { x ,  y ,  z }
Colors of variables: wff set class
Syntax hints:    u. cun 3195   {csn 3666   {cpr 3667   {ctp 3668  BOUNDED wbdc 16203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-17 1572  ax-ial 1580  ax-ext 2211  ax-bd0 16176  ax-bdor 16179  ax-bdeq 16183  ax-bdsb 16185
This theorem depends on definitions:  df-bi 117  df-clab 2216  df-cleq 2222  df-clel 2225  df-un 3201  df-sn 3672  df-pr 3673  df-tp 3674  df-bdc 16204
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator