Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdctp Unicode version

Theorem bdctp 13385
Description: The unordered triple of three setvars is bounded. (Contributed by BJ, 16-Oct-2019.)
Assertion
Ref Expression
bdctp  |- BOUNDED  { x ,  y ,  z }

Proof of Theorem bdctp
StepHypRef Expression
1 bdcpr 13384 . . 3  |- BOUNDED  { x ,  y }
2 bdcsn 13383 . . 3  |- BOUNDED  { z }
31, 2bdcun 13375 . 2  |- BOUNDED  ( { x ,  y }  u.  {
z } )
4 df-tp 3564 . 2  |-  { x ,  y ,  z }  =  ( { x ,  y }  u.  { z } )
53, 4bdceqir 13357 1  |- BOUNDED  { x ,  y ,  z }
Colors of variables: wff set class
Syntax hints:    u. cun 3096   {csn 3556   {cpr 3557   {ctp 3558  BOUNDED wbdc 13353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1424  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-4 1487  ax-17 1503  ax-ial 1511  ax-ext 2136  ax-bd0 13326  ax-bdor 13329  ax-bdeq 13333  ax-bdsb 13335
This theorem depends on definitions:  df-bi 116  df-clab 2141  df-cleq 2147  df-clel 2150  df-un 3102  df-sn 3562  df-pr 3563  df-tp 3564  df-bdc 13354
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator