Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcrab Unicode version

Theorem bdcrab 13887
Description: A class defined by restricted abstraction from a bounded class and a bounded formula is bounded. (Contributed by BJ, 3-Oct-2019.)
Hypotheses
Ref Expression
bdcrab.1  |- BOUNDED  A
bdcrab.2  |- BOUNDED  ph
Assertion
Ref Expression
bdcrab  |- BOUNDED  { x  e.  A  |  ph }
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem bdcrab
StepHypRef Expression
1 bdcrab.1 . . . . 5  |- BOUNDED  A
21bdeli 13881 . . . 4  |- BOUNDED  x  e.  A
3 bdcrab.2 . . . 4  |- BOUNDED  ph
42, 3ax-bdan 13850 . . 3  |- BOUNDED  ( x  e.  A  /\  ph )
54bdcab 13884 . 2  |- BOUNDED  { x  |  ( x  e.  A  /\  ph ) }
6 df-rab 2457 . 2  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
75, 6bdceqir 13879 1  |- BOUNDED  { x  e.  A  |  ph }
Colors of variables: wff set class
Syntax hints:    /\ wa 103    e. wcel 2141   {cab 2156   {crab 2452  BOUNDED wbd 13847  BOUNDED wbdc 13875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-17 1519  ax-ial 1527  ax-ext 2152  ax-bd0 13848  ax-bdan 13850  ax-bdsb 13857
This theorem depends on definitions:  df-bi 116  df-clab 2157  df-cleq 2163  df-clel 2166  df-rab 2457  df-bdc 13876
This theorem is referenced by:  bdrabexg  13941
  Copyright terms: Public domain W3C validator