Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdrabexg Unicode version

Theorem bdrabexg 15775
Description: Bounded version of rabexg 4186. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bdrabexg.bd  |- BOUNDED  ph
bdrabexg.bdc  |- BOUNDED  A
Assertion
Ref Expression
bdrabexg  |-  ( A  e.  V  ->  { x  e.  A  |  ph }  e.  _V )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    V( x)

Proof of Theorem bdrabexg
StepHypRef Expression
1 ssrab2 3277 . 2  |-  { x  e.  A  |  ph }  C_  A
2 bdrabexg.bdc . . . 4  |- BOUNDED  A
3 bdrabexg.bd . . . 4  |- BOUNDED  ph
42, 3bdcrab 15721 . . 3  |- BOUNDED  { x  e.  A  |  ph }
54bdssexg 15773 . 2  |-  ( ( { x  e.  A  |  ph }  C_  A  /\  A  e.  V
)  ->  { x  e.  A  |  ph }  e.  _V )
61, 5mpan 424 1  |-  ( A  e.  V  ->  { x  e.  A  |  ph }  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2175   {crab 2487   _Vcvv 2771    C_ wss 3165  BOUNDED wbd 15681  BOUNDED wbdc 15709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186  ax-bd0 15682  ax-bdan 15684  ax-bdsb 15691  ax-bdsep 15753
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-rab 2492  df-v 2773  df-in 3171  df-ss 3178  df-bdc 15710
This theorem is referenced by:  bj-inex  15776
  Copyright terms: Public domain W3C validator