Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdrabexg Unicode version

Theorem bdrabexg 13941
Description: Bounded version of rabexg 4132. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bdrabexg.bd  |- BOUNDED  ph
bdrabexg.bdc  |- BOUNDED  A
Assertion
Ref Expression
bdrabexg  |-  ( A  e.  V  ->  { x  e.  A  |  ph }  e.  _V )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    V( x)

Proof of Theorem bdrabexg
StepHypRef Expression
1 ssrab2 3232 . 2  |-  { x  e.  A  |  ph }  C_  A
2 bdrabexg.bdc . . . 4  |- BOUNDED  A
3 bdrabexg.bd . . . 4  |- BOUNDED  ph
42, 3bdcrab 13887 . . 3  |- BOUNDED  { x  e.  A  |  ph }
54bdssexg 13939 . 2  |-  ( ( { x  e.  A  |  ph }  C_  A  /\  A  e.  V
)  ->  { x  e.  A  |  ph }  e.  _V )
61, 5mpan 422 1  |-  ( A  e.  V  ->  { x  e.  A  |  ph }  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2141   {crab 2452   _Vcvv 2730    C_ wss 3121  BOUNDED wbd 13847  BOUNDED wbdc 13875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-bd0 13848  ax-bdan 13850  ax-bdsb 13857  ax-bdsep 13919
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rab 2457  df-v 2732  df-in 3127  df-ss 3134  df-bdc 13876
This theorem is referenced by:  bj-inex  13942
  Copyright terms: Public domain W3C validator