Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdrabexg | Unicode version |
Description: Bounded version of rabexg 4125. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bdrabexg.bd | BOUNDED |
bdrabexg.bdc | BOUNDED |
Ref | Expression |
---|---|
bdrabexg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 3227 | . 2 | |
2 | bdrabexg.bdc | . . . 4 BOUNDED | |
3 | bdrabexg.bd | . . . 4 BOUNDED | |
4 | 2, 3 | bdcrab 13734 | . . 3 BOUNDED |
5 | 4 | bdssexg 13786 | . 2 |
6 | 1, 5 | mpan 421 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2136 crab 2448 cvv 2726 wss 3116 BOUNDED wbd 13694 BOUNDED wbdc 13722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-bd0 13695 ax-bdan 13697 ax-bdsb 13704 ax-bdsep 13766 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rab 2453 df-v 2728 df-in 3122 df-ss 3129 df-bdc 13723 |
This theorem is referenced by: bj-inex 13789 |
Copyright terms: Public domain | W3C validator |