Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdrabexg Unicode version

Theorem bdrabexg 13788
Description: Bounded version of rabexg 4125. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bdrabexg.bd  |- BOUNDED  ph
bdrabexg.bdc  |- BOUNDED  A
Assertion
Ref Expression
bdrabexg  |-  ( A  e.  V  ->  { x  e.  A  |  ph }  e.  _V )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    V( x)

Proof of Theorem bdrabexg
StepHypRef Expression
1 ssrab2 3227 . 2  |-  { x  e.  A  |  ph }  C_  A
2 bdrabexg.bdc . . . 4  |- BOUNDED  A
3 bdrabexg.bd . . . 4  |- BOUNDED  ph
42, 3bdcrab 13734 . . 3  |- BOUNDED  { x  e.  A  |  ph }
54bdssexg 13786 . 2  |-  ( ( { x  e.  A  |  ph }  C_  A  /\  A  e.  V
)  ->  { x  e.  A  |  ph }  e.  _V )
61, 5mpan 421 1  |-  ( A  e.  V  ->  { x  e.  A  |  ph }  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2136   {crab 2448   _Vcvv 2726    C_ wss 3116  BOUNDED wbd 13694  BOUNDED wbdc 13722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-bd0 13695  ax-bdan 13697  ax-bdsb 13704  ax-bdsep 13766
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rab 2453  df-v 2728  df-in 3122  df-ss 3129  df-bdc 13723
This theorem is referenced by:  bj-inex  13789
  Copyright terms: Public domain W3C validator