Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcrab GIF version

Theorem bdcrab 13887
Description: A class defined by restricted abstraction from a bounded class and a bounded formula is bounded. (Contributed by BJ, 3-Oct-2019.)
Hypotheses
Ref Expression
bdcrab.1 BOUNDED 𝐴
bdcrab.2 BOUNDED 𝜑
Assertion
Ref Expression
bdcrab BOUNDED {𝑥𝐴𝜑}
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem bdcrab
StepHypRef Expression
1 bdcrab.1 . . . . 5 BOUNDED 𝐴
21bdeli 13881 . . . 4 BOUNDED 𝑥𝐴
3 bdcrab.2 . . . 4 BOUNDED 𝜑
42, 3ax-bdan 13850 . . 3 BOUNDED (𝑥𝐴𝜑)
54bdcab 13884 . 2 BOUNDED {𝑥 ∣ (𝑥𝐴𝜑)}
6 df-rab 2457 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
75, 6bdceqir 13879 1 BOUNDED {𝑥𝐴𝜑}
Colors of variables: wff set class
Syntax hints:  wa 103  wcel 2141  {cab 2156  {crab 2452  BOUNDED wbd 13847  BOUNDED wbdc 13875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-17 1519  ax-ial 1527  ax-ext 2152  ax-bd0 13848  ax-bdan 13850  ax-bdsb 13857
This theorem depends on definitions:  df-bi 116  df-clab 2157  df-cleq 2163  df-clel 2166  df-rab 2457  df-bdc 13876
This theorem is referenced by:  bdrabexg  13941
  Copyright terms: Public domain W3C validator