Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcrab GIF version

Theorem bdcrab 11400
Description: A class defined by restricted abstraction from a bounded class and a bounded formula is bounded. (Contributed by BJ, 3-Oct-2019.)
Hypotheses
Ref Expression
bdcrab.1 BOUNDED 𝐴
bdcrab.2 BOUNDED 𝜑
Assertion
Ref Expression
bdcrab BOUNDED {𝑥𝐴𝜑}
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem bdcrab
StepHypRef Expression
1 bdcrab.1 . . . . 5 BOUNDED 𝐴
21bdeli 11394 . . . 4 BOUNDED 𝑥𝐴
3 bdcrab.2 . . . 4 BOUNDED 𝜑
42, 3ax-bdan 11363 . . 3 BOUNDED (𝑥𝐴𝜑)
54bdcab 11397 . 2 BOUNDED {𝑥 ∣ (𝑥𝐴𝜑)}
6 df-rab 2368 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
75, 6bdceqir 11392 1 BOUNDED {𝑥𝐴𝜑}
Colors of variables: wff set class
Syntax hints:  wa 102  wcel 1438  {cab 2074  {crab 2363  BOUNDED wbd 11360  BOUNDED wbdc 11388
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1381  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-4 1445  ax-17 1464  ax-ial 1472  ax-ext 2070  ax-bd0 11361  ax-bdan 11363  ax-bdsb 11370
This theorem depends on definitions:  df-bi 115  df-clab 2075  df-cleq 2081  df-clel 2084  df-rab 2368  df-bdc 11389
This theorem is referenced by:  bdrabexg  11454
  Copyright terms: Public domain W3C validator