Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcrab GIF version

Theorem bdcrab 15498
Description: A class defined by restricted abstraction from a bounded class and a bounded formula is bounded. (Contributed by BJ, 3-Oct-2019.)
Hypotheses
Ref Expression
bdcrab.1 BOUNDED 𝐴
bdcrab.2 BOUNDED 𝜑
Assertion
Ref Expression
bdcrab BOUNDED {𝑥𝐴𝜑}
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem bdcrab
StepHypRef Expression
1 bdcrab.1 . . . . 5 BOUNDED 𝐴
21bdeli 15492 . . . 4 BOUNDED 𝑥𝐴
3 bdcrab.2 . . . 4 BOUNDED 𝜑
42, 3ax-bdan 15461 . . 3 BOUNDED (𝑥𝐴𝜑)
54bdcab 15495 . 2 BOUNDED {𝑥 ∣ (𝑥𝐴𝜑)}
6 df-rab 2484 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
75, 6bdceqir 15490 1 BOUNDED {𝑥𝐴𝜑}
Colors of variables: wff set class
Syntax hints:  wa 104  wcel 2167  {cab 2182  {crab 2479  BOUNDED wbd 15458  BOUNDED wbdc 15486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-17 1540  ax-ial 1548  ax-ext 2178  ax-bd0 15459  ax-bdan 15461  ax-bdsb 15468
This theorem depends on definitions:  df-bi 117  df-clab 2183  df-cleq 2189  df-clel 2192  df-rab 2484  df-bdc 15487
This theorem is referenced by:  bdrabexg  15552
  Copyright terms: Public domain W3C validator