| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-rab | Unicode version | ||
| Description: Define a restricted class
abstraction (class builder), which is the class
of all |
| Ref | Expression |
|---|---|
| df-rab |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph |
. . 3
| |
| 2 | vx |
. . 3
| |
| 3 | cA |
. . 3
| |
| 4 | 1, 2, 3 | crab 2487 |
. 2
|
| 5 | 2 | cv 1371 |
. . . . 5
|
| 6 | 5, 3 | wcel 2175 |
. . . 4
|
| 7 | 6, 1 | wa 104 |
. . 3
|
| 8 | 7, 2 | cab 2190 |
. 2
|
| 9 | 4, 8 | wceq 1372 |
1
|
| Colors of variables: wff set class |
| This definition is referenced by: rabid 2681 rabid2 2682 rabbi 2683 rabswap 2684 nfrab1 2685 nfrabw 2686 rabbiia 2756 rabbidva2 2758 rabeqf 2761 cbvrab 2769 rabab 2792 elrabi 2925 elrabf 2926 elrab3t 2927 ralrab2 2937 rexrab2 2939 cbvrabcsf 3158 dfin5 3172 dfdif2 3173 ss2rab 3268 rabss 3269 ssrab 3270 rabss2 3275 ssrab2 3277 rabssab 3280 notab 3442 unrab 3443 inrab 3444 inrab2 3445 difrab 3446 dfrab2 3447 dfrab3 3448 notrab 3449 rabun2 3451 dfnul3 3462 rabn0r 3486 rabn0m 3487 rab0 3488 rabeq0 3489 dfif6 3572 rabsn 3699 reusn 3703 rabsneu 3705 elunirab 3862 elintrab 3896 ssintrab 3907 iunrab 3974 iinrabm 3989 intexrabim 4196 repizf2 4205 exss 4270 rabxp 4710 exse2 5053 mptpreima 5173 fndmin 5681 fncnvima2 5695 riotauni 5896 riotacl2 5903 snriota 5919 xp2 6249 unielxp 6250 dfopab2 6265 unfiexmid 6997 nnzrab 9378 nn0zrab 9379 wrdnval 10999 shftlem 11046 shftuz 11047 shftdm 11052 negfi 11458 eqglact 13479 dfrhm2 13834 cnblcld 14925 2lgslem1b 15484 if0ab 15605 bdcrab 15652 |
| Copyright terms: Public domain | W3C validator |