Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdctp GIF version

Theorem bdctp 14627
Description: The unordered triple of three setvars is bounded. (Contributed by BJ, 16-Oct-2019.)
Assertion
Ref Expression
bdctp BOUNDED {𝑥, 𝑦, 𝑧}

Proof of Theorem bdctp
StepHypRef Expression
1 bdcpr 14626 . . 3 BOUNDED {𝑥, 𝑦}
2 bdcsn 14625 . . 3 BOUNDED {𝑧}
31, 2bdcun 14617 . 2 BOUNDED ({𝑥, 𝑦} ∪ {𝑧})
4 df-tp 3601 . 2 {𝑥, 𝑦, 𝑧} = ({𝑥, 𝑦} ∪ {𝑧})
53, 4bdceqir 14599 1 BOUNDED {𝑥, 𝑦, 𝑧}
Colors of variables: wff set class
Syntax hints:  cun 3128  {csn 3593  {cpr 3594  {ctp 3595  BOUNDED wbdc 14595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-4 1510  ax-17 1526  ax-ial 1534  ax-ext 2159  ax-bd0 14568  ax-bdor 14571  ax-bdeq 14575  ax-bdsb 14577
This theorem depends on definitions:  df-bi 117  df-clab 2164  df-cleq 2170  df-clel 2173  df-un 3134  df-sn 3599  df-pr 3600  df-tp 3601  df-bdc 14596
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator