![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdctp | GIF version |
Description: The unordered triple of three setvars is bounded. (Contributed by BJ, 16-Oct-2019.) |
Ref | Expression |
---|---|
bdctp | ⊢ BOUNDED {𝑥, 𝑦, 𝑧} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdcpr 15484 | . . 3 ⊢ BOUNDED {𝑥, 𝑦} | |
2 | bdcsn 15483 | . . 3 ⊢ BOUNDED {𝑧} | |
3 | 1, 2 | bdcun 15475 | . 2 ⊢ BOUNDED ({𝑥, 𝑦} ∪ {𝑧}) |
4 | df-tp 3630 | . 2 ⊢ {𝑥, 𝑦, 𝑧} = ({𝑥, 𝑦} ∪ {𝑧}) | |
5 | 3, 4 | bdceqir 15457 | 1 ⊢ BOUNDED {𝑥, 𝑦, 𝑧} |
Colors of variables: wff set class |
Syntax hints: ∪ cun 3155 {csn 3622 {cpr 3623 {ctp 3624 BOUNDED wbdc 15453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 ax-bd0 15426 ax-bdor 15429 ax-bdeq 15433 ax-bdsb 15435 |
This theorem depends on definitions: df-bi 117 df-clab 2183 df-cleq 2189 df-clel 2192 df-un 3161 df-sn 3628 df-pr 3629 df-tp 3630 df-bdc 15454 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |