Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdctp GIF version

Theorem bdctp 13754
Description: The unordered triple of three setvars is bounded. (Contributed by BJ, 16-Oct-2019.)
Assertion
Ref Expression
bdctp BOUNDED {𝑥, 𝑦, 𝑧}

Proof of Theorem bdctp
StepHypRef Expression
1 bdcpr 13753 . . 3 BOUNDED {𝑥, 𝑦}
2 bdcsn 13752 . . 3 BOUNDED {𝑧}
31, 2bdcun 13744 . 2 BOUNDED ({𝑥, 𝑦} ∪ {𝑧})
4 df-tp 3584 . 2 {𝑥, 𝑦, 𝑧} = ({𝑥, 𝑦} ∪ {𝑧})
53, 4bdceqir 13726 1 BOUNDED {𝑥, 𝑦, 𝑧}
Colors of variables: wff set class
Syntax hints:  cun 3114  {csn 3576  {cpr 3577  {ctp 3578  BOUNDED wbdc 13722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-ial 1522  ax-ext 2147  ax-bd0 13695  ax-bdor 13698  ax-bdeq 13702  ax-bdsb 13704
This theorem depends on definitions:  df-bi 116  df-clab 2152  df-cleq 2158  df-clel 2161  df-un 3120  df-sn 3582  df-pr 3583  df-tp 3584  df-bdc 13723
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator