Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdctp GIF version

Theorem bdctp 15946
Description: The unordered triple of three setvars is bounded. (Contributed by BJ, 16-Oct-2019.)
Assertion
Ref Expression
bdctp BOUNDED {𝑥, 𝑦, 𝑧}

Proof of Theorem bdctp
StepHypRef Expression
1 bdcpr 15945 . . 3 BOUNDED {𝑥, 𝑦}
2 bdcsn 15944 . . 3 BOUNDED {𝑧}
31, 2bdcun 15936 . 2 BOUNDED ({𝑥, 𝑦} ∪ {𝑧})
4 df-tp 3646 . 2 {𝑥, 𝑦, 𝑧} = ({𝑥, 𝑦} ∪ {𝑧})
53, 4bdceqir 15918 1 BOUNDED {𝑥, 𝑦, 𝑧}
Colors of variables: wff set class
Syntax hints:  cun 3168  {csn 3638  {cpr 3639  {ctp 3640  BOUNDED wbdc 15914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-17 1550  ax-ial 1558  ax-ext 2188  ax-bd0 15887  ax-bdor 15890  ax-bdeq 15894  ax-bdsb 15896
This theorem depends on definitions:  df-bi 117  df-clab 2193  df-cleq 2199  df-clel 2202  df-un 3174  df-sn 3644  df-pr 3645  df-tp 3646  df-bdc 15915
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator