Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdctp GIF version

Theorem bdctp 15485
Description: The unordered triple of three setvars is bounded. (Contributed by BJ, 16-Oct-2019.)
Assertion
Ref Expression
bdctp BOUNDED {𝑥, 𝑦, 𝑧}

Proof of Theorem bdctp
StepHypRef Expression
1 bdcpr 15484 . . 3 BOUNDED {𝑥, 𝑦}
2 bdcsn 15483 . . 3 BOUNDED {𝑧}
31, 2bdcun 15475 . 2 BOUNDED ({𝑥, 𝑦} ∪ {𝑧})
4 df-tp 3630 . 2 {𝑥, 𝑦, 𝑧} = ({𝑥, 𝑦} ∪ {𝑧})
53, 4bdceqir 15457 1 BOUNDED {𝑥, 𝑦, 𝑧}
Colors of variables: wff set class
Syntax hints:  cun 3155  {csn 3622  {cpr 3623  {ctp 3624  BOUNDED wbdc 15453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-17 1540  ax-ial 1548  ax-ext 2178  ax-bd0 15426  ax-bdor 15429  ax-bdeq 15433  ax-bdsb 15435
This theorem depends on definitions:  df-bi 117  df-clab 2183  df-cleq 2189  df-clel 2192  df-un 3161  df-sn 3628  df-pr 3629  df-tp 3630  df-bdc 15454
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator