Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdctp GIF version

Theorem bdctp 16193
Description: The unordered triple of three setvars is bounded. (Contributed by BJ, 16-Oct-2019.)
Assertion
Ref Expression
bdctp BOUNDED {𝑥, 𝑦, 𝑧}

Proof of Theorem bdctp
StepHypRef Expression
1 bdcpr 16192 . . 3 BOUNDED {𝑥, 𝑦}
2 bdcsn 16191 . . 3 BOUNDED {𝑧}
31, 2bdcun 16183 . 2 BOUNDED ({𝑥, 𝑦} ∪ {𝑧})
4 df-tp 3674 . 2 {𝑥, 𝑦, 𝑧} = ({𝑥, 𝑦} ∪ {𝑧})
53, 4bdceqir 16165 1 BOUNDED {𝑥, 𝑦, 𝑧}
Colors of variables: wff set class
Syntax hints:  cun 3195  {csn 3666  {cpr 3667  {ctp 3668  BOUNDED wbdc 16161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-17 1572  ax-ial 1580  ax-ext 2211  ax-bd0 16134  ax-bdor 16137  ax-bdeq 16141  ax-bdsb 16143
This theorem depends on definitions:  df-bi 117  df-clab 2216  df-cleq 2222  df-clel 2225  df-un 3201  df-sn 3672  df-pr 3673  df-tp 3674  df-bdc 16162
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator