Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdsep2 Unicode version

Theorem bdsep2 16249
Description: Version of ax-bdsep 16247 with one disjoint variable condition removed and without initial universal quantifier. Use bdsep1 16248 when sufficient. (Contributed by BJ, 5-Oct-2019.)
Hypothesis
Ref Expression
bdsep2.1  |- BOUNDED  ph
Assertion
Ref Expression
bdsep2  |-  E. b A. x ( x  e.  b  <->  ( x  e.  a  /\  ph )
)
Distinct variable groups:    a, b, x    ph, b
Allowed substitution hints:    ph( x, a)

Proof of Theorem bdsep2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eleq2 2293 . . . . . 6  |-  ( y  =  a  ->  (
x  e.  y  <->  x  e.  a ) )
21anbi1d 465 . . . . 5  |-  ( y  =  a  ->  (
( x  e.  y  /\  ph )  <->  ( x  e.  a  /\  ph )
) )
32bibi2d 232 . . . 4  |-  ( y  =  a  ->  (
( x  e.  b  <-> 
( x  e.  y  /\  ph ) )  <-> 
( x  e.  b  <-> 
( x  e.  a  /\  ph ) ) ) )
43albidv 1870 . . 3  |-  ( y  =  a  ->  ( A. x ( x  e.  b  <->  ( x  e.  y  /\  ph )
)  <->  A. x ( x  e.  b  <->  ( x  e.  a  /\  ph )
) ) )
54exbidv 1871 . 2  |-  ( y  =  a  ->  ( E. b A. x ( x  e.  b  <->  ( x  e.  y  /\  ph )
)  <->  E. b A. x
( x  e.  b  <-> 
( x  e.  a  /\  ph ) ) ) )
6 bdsep2.1 . . 3  |- BOUNDED  ph
76bdsep1 16248 . 2  |-  E. b A. x ( x  e.  b  <->  ( x  e.  y  /\  ph )
)
85, 7chvarv 1988 1  |-  E. b A. x ( x  e.  b  <->  ( x  e.  a  /\  ph )
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   A.wal 1393   E.wex 1538  BOUNDED wbd 16175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-ext 2211  ax-bdsep 16247
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-cleq 2222  df-clel 2225
This theorem is referenced by:  bdsepnft  16250  bdsepnfALT  16252
  Copyright terms: Public domain W3C validator