Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdssexd Unicode version

Theorem bdssexd 13940
Description: Bounded version of ssexd 4129. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bdssexd.1  |-  ( ph  ->  B  e.  C )
bdssexd.2  |-  ( ph  ->  A  C_  B )
bdssexd.bd  |- BOUNDED  A
Assertion
Ref Expression
bdssexd  |-  ( ph  ->  A  e.  _V )

Proof of Theorem bdssexd
StepHypRef Expression
1 bdssexd.2 . 2  |-  ( ph  ->  A  C_  B )
2 bdssexd.1 . 2  |-  ( ph  ->  B  e.  C )
3 bdssexd.bd . . 3  |- BOUNDED  A
43bdssexg 13939 . 2  |-  ( ( A  C_  B  /\  B  e.  C )  ->  A  e.  _V )
51, 2, 4syl2anc 409 1  |-  ( ph  ->  A  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2141   _Vcvv 2730    C_ wss 3121  BOUNDED wbdc 13875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-bdsep 13919
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-in 3127  df-ss 3134  df-bdc 13876
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator