| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ssexd | Unicode version | ||
| Description: A subclass of a set is a set. Deduction form of ssexg 4172. (Contributed by David Moews, 1-May-2017.) | 
| Ref | Expression | 
|---|---|
| ssexd.1 | 
 | 
| ssexd.2 | 
 | 
| Ref | Expression | 
|---|---|
| ssexd | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ssexd.2 | 
. 2
 | |
| 2 | ssexd.1 | 
. 2
 | |
| 3 | ssexg 4172 | 
. 2
 | |
| 4 | 1, 2, 3 | syl2anc 411 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4151 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 | 
| This theorem is referenced by: iotaexab 5237 fex2 5426 riotaexg 5881 opabbrex 5966 funexw 6169 f1imaen2g 6852 pw2f1odclem 6895 fiss 7043 genipv 7576 suplocexprlemlub 7791 hashfacen 10928 ovshftex 10984 strslssd 12725 ressbas2d 12746 ressval3d 12750 ressabsg 12754 restid2 12919 ptex 12935 divsfval 12971 divsfvalg 12972 igsumvalx 13032 issubmnd 13083 ress0g 13084 issubg2m 13319 releqgg 13350 eqgex 13351 eqgfval 13352 isghm 13373 ringidss 13585 reldvdsrsrg 13648 dvdsrvald 13649 dvdsrex 13654 unitgrp 13672 unitabl 13673 unitlinv 13682 unitrinv 13683 dvrfvald 13689 rdivmuldivd 13700 invrpropdg 13705 rhmunitinv 13734 subrgugrp 13796 aprval 13838 aprap 13842 sralemg 13994 srascag 13998 sravscag 13999 sraipg 14000 sraex 14002 2basgeng 14318 cnrest2 14472 cnptopresti 14474 cnptoprest 14475 cnptoprest2 14476 cnmpt2res 14533 psmetres2 14569 xmetres2 14615 limccnp2lem 14912 limccnp2cntop 14913 dvfvalap 14917 dvmulxxbr 14938 dvaddxx 14939 dvmulxx 14940 dviaddf 14941 dvimulf 14942 dvcoapbr 14943 dvmptaddx 14955 dvmptmulx 14956 plycj 14997 | 
| Copyright terms: Public domain | W3C validator |