ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssexd Unicode version

Theorem ssexd 4122
Description: A subclass of a set is a set. Deduction form of ssexg 4121. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
ssexd.1  |-  ( ph  ->  B  e.  C )
ssexd.2  |-  ( ph  ->  A  C_  B )
Assertion
Ref Expression
ssexd  |-  ( ph  ->  A  e.  _V )

Proof of Theorem ssexd
StepHypRef Expression
1 ssexd.2 . 2  |-  ( ph  ->  A  C_  B )
2 ssexd.1 . 2  |-  ( ph  ->  B  e.  C )
3 ssexg 4121 . 2  |-  ( ( A  C_  B  /\  B  e.  C )  ->  A  e.  _V )
41, 2, 3syl2anc 409 1  |-  ( ph  ->  A  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2136   _Vcvv 2726    C_ wss 3116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-sep 4100
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-in 3122  df-ss 3129
This theorem is referenced by:  fex2  5356  riotaexg  5802  opabbrex  5886  funexw  6080  f1imaen2g  6759  fiss  6942  genipv  7450  suplocexprlemlub  7665  hashfacen  10749  ovshftex  10761  strslssd  12440  restid2  12565  2basgeng  12722  cnrest2  12876  cnptopresti  12878  cnptoprest  12879  cnptoprest2  12880  cnmpt2res  12937  psmetres2  12973  xmetres2  13019  limccnp2lem  13285  limccnp2cntop  13286  dvfvalap  13290  dvmulxxbr  13306  dvaddxx  13307  dvmulxx  13308  dviaddf  13309  dvimulf  13310  dvcoapbr  13311  dvmptaddx  13321  dvmptmulx  13322
  Copyright terms: Public domain W3C validator