![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssexd | Unicode version |
Description: A subclass of a set is a set. Deduction form of ssexg 4169. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
ssexd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ssexd.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ssexd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssexd.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ssexd.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | ssexg 4169 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | syl2anc 411 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-sep 4148 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-in 3160 df-ss 3167 |
This theorem is referenced by: iotaexab 5234 fex2 5423 riotaexg 5878 opabbrex 5963 funexw 6166 f1imaen2g 6849 pw2f1odclem 6892 fiss 7038 genipv 7571 suplocexprlemlub 7786 hashfacen 10910 ovshftex 10966 strslssd 12668 ressbas2d 12689 ressval3d 12693 ressabsg 12697 restid2 12862 ptex 12878 divsfval 12914 divsfvalg 12915 igsumvalx 12975 issubmnd 13026 ress0g 13027 issubg2m 13262 releqgg 13293 eqgex 13294 eqgfval 13295 isghm 13316 ringidss 13528 reldvdsrsrg 13591 dvdsrvald 13592 dvdsrex 13597 unitgrp 13615 unitabl 13616 unitlinv 13625 unitrinv 13626 dvrfvald 13632 rdivmuldivd 13643 invrpropdg 13648 rhmunitinv 13677 subrgugrp 13739 aprval 13781 aprap 13785 sralemg 13937 srascag 13941 sravscag 13942 sraipg 13943 sraex 13945 2basgeng 14261 cnrest2 14415 cnptopresti 14417 cnptoprest 14418 cnptoprest2 14419 cnmpt2res 14476 psmetres2 14512 xmetres2 14558 limccnp2lem 14855 limccnp2cntop 14856 dvfvalap 14860 dvmulxxbr 14881 dvaddxx 14882 dvmulxx 14883 dviaddf 14884 dvimulf 14885 dvcoapbr 14886 dvmptaddx 14898 dvmptmulx 14899 plycj 14939 |
Copyright terms: Public domain | W3C validator |