| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssexd | Unicode version | ||
| Description: A subclass of a set is a set. Deduction form of ssexg 4173. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| ssexd.1 |
|
| ssexd.2 |
|
| Ref | Expression |
|---|---|
| ssexd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssexd.2 |
. 2
| |
| 2 | ssexd.1 |
. 2
| |
| 3 | ssexg 4173 |
. 2
| |
| 4 | 1, 2, 3 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 |
| This theorem is referenced by: iotaexab 5238 fex2 5429 riotaexg 5884 opabbrex 5970 funexw 6178 f1imaen2g 6861 pw2f1odclem 6904 fiss 7052 genipv 7593 suplocexprlemlub 7808 hashfacen 10945 ovshftex 11001 strslssd 12750 ressbas2d 12771 ressval3d 12775 ressabsg 12779 restid2 12950 ptex 12966 prdsval 12975 prdsbaslemss 12976 divsfval 13030 divsfvalg 13031 igsumvalx 13091 issubmnd 13144 ress0g 13145 issubg2m 13395 releqgg 13426 eqgex 13427 eqgfval 13428 isghm 13449 ringidss 13661 reldvdsrsrg 13724 dvdsrvald 13725 dvdsrex 13730 unitgrp 13748 unitabl 13749 unitlinv 13758 unitrinv 13759 dvrfvald 13765 rdivmuldivd 13776 invrpropdg 13781 rhmunitinv 13810 subrgugrp 13872 aprval 13914 aprap 13918 sralemg 14070 srascag 14074 sravscag 14075 sraipg 14076 sraex 14078 2basgeng 14402 cnrest2 14556 cnptopresti 14558 cnptoprest 14559 cnptoprest2 14560 cnmpt2res 14617 psmetres2 14653 xmetres2 14699 limccnp2lem 14996 limccnp2cntop 14997 dvfvalap 15001 dvmulxxbr 15022 dvaddxx 15023 dvmulxx 15024 dviaddf 15025 dvimulf 15026 dvcoapbr 15027 dvmptaddx 15039 dvmptmulx 15040 plycj 15081 |
| Copyright terms: Public domain | W3C validator |