![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssexd | Unicode version |
Description: A subclass of a set is a set. Deduction form of ssexg 4141. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
ssexd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ssexd.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ssexd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssexd.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ssexd.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | ssexg 4141 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | syl2anc 411 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 ax-sep 4120 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2739 df-in 3135 df-ss 3142 |
This theorem is referenced by: fex2 5383 riotaexg 5832 opabbrex 5916 funexw 6110 f1imaen2g 6790 fiss 6973 genipv 7505 suplocexprlemlub 7720 hashfacen 10809 ovshftex 10821 strslssd 12501 ressbas2d 12520 ressval3d 12523 ressabsg 12527 restid2 12685 issubmnd 12775 ress0g 12776 issubg2m 12980 releqgg 13011 eqgfval 13012 ringidss 13143 reldvdsrsrg 13192 dvdsrvald 13193 dvdsrex 13198 unitgrp 13216 unitabl 13217 unitlinv 13226 unitrinv 13227 dvrfvald 13233 rdivmuldivd 13244 invrpropdg 13249 aprval 13271 aprap 13275 subrgugrp 13299 2basgeng 13453 cnrest2 13607 cnptopresti 13609 cnptoprest 13610 cnptoprest2 13611 cnmpt2res 13668 psmetres2 13704 xmetres2 13750 limccnp2lem 14016 limccnp2cntop 14017 dvfvalap 14021 dvmulxxbr 14037 dvaddxx 14038 dvmulxx 14039 dviaddf 14040 dvimulf 14041 dvcoapbr 14042 dvmptaddx 14052 dvmptmulx 14053 |
Copyright terms: Public domain | W3C validator |