![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssexd | Unicode version |
Description: A subclass of a set is a set. Deduction form of ssexg 4168. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
ssexd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ssexd.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ssexd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssexd.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ssexd.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | ssexg 4168 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | syl2anc 411 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-sep 4147 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-in 3159 df-ss 3166 |
This theorem is referenced by: iotaexab 5233 fex2 5422 riotaexg 5877 opabbrex 5962 funexw 6164 f1imaen2g 6847 pw2f1odclem 6890 fiss 7036 genipv 7569 suplocexprlemlub 7784 hashfacen 10907 ovshftex 10963 strslssd 12665 ressbas2d 12686 ressval3d 12690 ressabsg 12694 restid2 12859 ptex 12875 divsfval 12911 divsfvalg 12912 igsumvalx 12972 issubmnd 13023 ress0g 13024 issubg2m 13259 releqgg 13290 eqgex 13291 eqgfval 13292 isghm 13313 ringidss 13525 reldvdsrsrg 13588 dvdsrvald 13589 dvdsrex 13594 unitgrp 13612 unitabl 13613 unitlinv 13622 unitrinv 13623 dvrfvald 13629 rdivmuldivd 13640 invrpropdg 13645 rhmunitinv 13674 subrgugrp 13736 aprval 13778 aprap 13782 sralemg 13934 srascag 13938 sravscag 13939 sraipg 13940 sraex 13942 2basgeng 14250 cnrest2 14404 cnptopresti 14406 cnptoprest 14407 cnptoprest2 14408 cnmpt2res 14465 psmetres2 14501 xmetres2 14547 limccnp2lem 14830 limccnp2cntop 14831 dvfvalap 14835 dvmulxxbr 14851 dvaddxx 14852 dvmulxx 14853 dviaddf 14854 dvimulf 14855 dvcoapbr 14856 dvmptaddx 14866 dvmptmulx 14867 |
Copyright terms: Public domain | W3C validator |