![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdssexd | GIF version |
Description: Bounded version of ssexd 4144. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bdssexd.1 | ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
bdssexd.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
bdssexd.bd | ⊢ BOUNDED 𝐴 |
Ref | Expression |
---|---|
bdssexd | ⊢ (𝜑 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdssexd.2 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | bdssexd.1 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐶) | |
3 | bdssexd.bd | . . 3 ⊢ BOUNDED 𝐴 | |
4 | 3 | bdssexg 14659 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) |
5 | 1, 2, 4 | syl2anc 411 | 1 ⊢ (𝜑 → 𝐴 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2148 Vcvv 2738 ⊆ wss 3130 BOUNDED wbdc 14595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 ax-bdsep 14639 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2740 df-in 3136 df-ss 3143 df-bdc 14596 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |