Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdssexd GIF version

Theorem bdssexd 15551
Description: Bounded version of ssexd 4173. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bdssexd.1 (𝜑𝐵𝐶)
bdssexd.2 (𝜑𝐴𝐵)
bdssexd.bd BOUNDED 𝐴
Assertion
Ref Expression
bdssexd (𝜑𝐴 ∈ V)

Proof of Theorem bdssexd
StepHypRef Expression
1 bdssexd.2 . 2 (𝜑𝐴𝐵)
2 bdssexd.1 . 2 (𝜑𝐵𝐶)
3 bdssexd.bd . . 3 BOUNDED 𝐴
43bdssexg 15550 . 2 ((𝐴𝐵𝐵𝐶) → 𝐴 ∈ V)
51, 2, 4syl2anc 411 1 (𝜑𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167  Vcvv 2763  wss 3157  BOUNDED wbdc 15486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-bdsep 15530
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163  df-ss 3170  df-bdc 15487
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator