Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdssexd | GIF version |
Description: Bounded version of ssexd 4121. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bdssexd.1 | ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
bdssexd.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
bdssexd.bd | ⊢ BOUNDED 𝐴 |
Ref | Expression |
---|---|
bdssexd | ⊢ (𝜑 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdssexd.2 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | bdssexd.1 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐶) | |
3 | bdssexd.bd | . . 3 ⊢ BOUNDED 𝐴 | |
4 | 3 | bdssexg 13746 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) |
5 | 1, 2, 4 | syl2anc 409 | 1 ⊢ (𝜑 → 𝐴 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 Vcvv 2725 ⊆ wss 3115 BOUNDED wbdc 13682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-bdsep 13726 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-v 2727 df-in 3121 df-ss 3128 df-bdc 13683 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |