Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdssexd GIF version

Theorem bdssexd 11796
Description: Bounded version of ssexd 3979. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bdssexd.1 (𝜑𝐵𝐶)
bdssexd.2 (𝜑𝐴𝐵)
bdssexd.bd BOUNDED 𝐴
Assertion
Ref Expression
bdssexd (𝜑𝐴 ∈ V)

Proof of Theorem bdssexd
StepHypRef Expression
1 bdssexd.2 . 2 (𝜑𝐴𝐵)
2 bdssexd.1 . 2 (𝜑𝐵𝐶)
3 bdssexd.bd . . 3 BOUNDED 𝐴
43bdssexg 11795 . 2 ((𝐴𝐵𝐵𝐶) → 𝐴 ∈ V)
51, 2, 4syl2anc 403 1 (𝜑𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1438  Vcvv 2619  wss 2999  BOUNDED wbdc 11731
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-bdsep 11775
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-v 2621  df-in 3005  df-ss 3012  df-bdc 11732
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator