Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdssexd GIF version

Theorem bdssexd 13940
Description: Bounded version of ssexd 4129. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bdssexd.1 (𝜑𝐵𝐶)
bdssexd.2 (𝜑𝐴𝐵)
bdssexd.bd BOUNDED 𝐴
Assertion
Ref Expression
bdssexd (𝜑𝐴 ∈ V)

Proof of Theorem bdssexd
StepHypRef Expression
1 bdssexd.2 . 2 (𝜑𝐴𝐵)
2 bdssexd.1 . 2 (𝜑𝐵𝐶)
3 bdssexd.bd . . 3 BOUNDED 𝐴
43bdssexg 13939 . 2 ((𝐴𝐵𝐵𝐶) → 𝐴 ∈ V)
51, 2, 4syl2anc 409 1 (𝜑𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2141  Vcvv 2730  wss 3121  BOUNDED wbdc 13875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-bdsep 13919
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-in 3127  df-ss 3134  df-bdc 13876
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator