Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdssexg Unicode version

Theorem bdssexg 12068
 Description: Bounded version of ssexg 3984. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bdssexg.bd BOUNDED
Assertion
Ref Expression
bdssexg

Proof of Theorem bdssexg
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 sseq2 3049 . . . 4
21imbi1d 230 . . 3
3 bdssexg.bd . . . 4 BOUNDED
4 vex 2623 . . . 4
53, 4bdssex 12066 . . 3
62, 5vtoclg 2680 . 2
76impcom 124 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 103   wceq 1290   wcel 1439  cvv 2620   wss 3000  BOUNDED wbdc 12004 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-bdsep 12048 This theorem depends on definitions:  df-bi 116  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-v 2622  df-in 3006  df-ss 3013  df-bdc 12005 This theorem is referenced by:  bdssexd  12069  bdrabexg  12070  bdunexb  12084
 Copyright terms: Public domain W3C validator