Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdssexg Unicode version

Theorem bdssexg 16267
Description: Bounded version of ssexg 4223. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bdssexg.bd  |- BOUNDED  A
Assertion
Ref Expression
bdssexg  |-  ( ( A  C_  B  /\  B  e.  C )  ->  A  e.  _V )

Proof of Theorem bdssexg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 sseq2 3248 . . . 4  |-  ( x  =  B  ->  ( A  C_  x  <->  A  C_  B
) )
21imbi1d 231 . . 3  |-  ( x  =  B  ->  (
( A  C_  x  ->  A  e.  _V )  <->  ( A  C_  B  ->  A  e.  _V ) ) )
3 bdssexg.bd . . . 4  |- BOUNDED  A
4 vex 2802 . . . 4  |-  x  e. 
_V
53, 4bdssex 16265 . . 3  |-  ( A 
C_  x  ->  A  e.  _V )
62, 5vtoclg 2861 . 2  |-  ( B  e.  C  ->  ( A  C_  B  ->  A  e.  _V ) )
76impcom 125 1  |-  ( ( A  C_  B  /\  B  e.  C )  ->  A  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   _Vcvv 2799    C_ wss 3197  BOUNDED wbdc 16203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-bdsep 16247
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203  df-ss 3210  df-bdc 16204
This theorem is referenced by:  bdssexd  16268  bdrabexg  16269  bdunexb  16283
  Copyright terms: Public domain W3C validator