Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdssexi Unicode version

Theorem bdssexi 15549
Description: Bounded version of ssexi 4171. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bdssexi.bd  |- BOUNDED  A
bdssexi.1  |-  B  e. 
_V
bdssexi.2  |-  A  C_  B
Assertion
Ref Expression
bdssexi  |-  A  e. 
_V

Proof of Theorem bdssexi
StepHypRef Expression
1 bdssexi.2 . 2  |-  A  C_  B
2 bdssexi.bd . . 3  |- BOUNDED  A
3 bdssexi.1 . . 3  |-  B  e. 
_V
42, 3bdssex 15548 . 2  |-  ( A 
C_  B  ->  A  e.  _V )
51, 4ax-mp 5 1  |-  A  e. 
_V
Colors of variables: wff set class
Syntax hints:    e. wcel 2167   _Vcvv 2763    C_ wss 3157  BOUNDED wbdc 15486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-bdsep 15530
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163  df-ss 3170  df-bdc 15487
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator