![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssexi | Unicode version |
Description: The subset of a set is also a set. (Contributed by NM, 9-Sep-1993.) |
Ref | Expression |
---|---|
ssexi.1 |
![]() ![]() ![]() ![]() |
ssexi.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ssexi |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssexi.2 |
. 2
![]() ![]() ![]() ![]() | |
2 | ssexi.1 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | ssex 4166 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | ax-mp 5 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-sep 4147 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-in 3159 df-ss 3166 |
This theorem is referenced by: zfausab 4171 pp0ex 4218 ord3ex 4219 epse 4373 opabex 5782 mptexw 6165 oprabex 6180 mpoexw 6266 phplem2 6909 phpm 6921 snexxph 7009 sbthlem2 7017 2omotaplemst 7318 niex 7372 enqex 7420 enq0ex 7499 npex 7533 ltnqex 7609 gtnqex 7610 recexprlemell 7682 recexprlemelu 7683 enrex 7797 axcnex 7919 peano5nnnn 7952 reex 8006 nnex 8988 zex 9326 qex 9697 ixxex 9965 iccen 10072 serclim0 11448 climle 11477 iserabs 11618 isumshft 11633 explecnv 11648 prodfclim1 11687 prmex 12251 exmidunben 12583 prdsex 12880 fngsum 12971 igsumvalx 12972 znval 14124 znle 14125 znbaslemnn 14127 istopon 14181 dmtopon 14191 lmres 14416 climcncf 14739 reldvg 14833 |
Copyright terms: Public domain | W3C validator |