| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ssexi | Unicode version | ||
| Description: The subset of a set is also a set. (Contributed by NM, 9-Sep-1993.) | 
| Ref | Expression | 
|---|---|
| ssexi.1 | 
 | 
| ssexi.2 | 
 | 
| Ref | Expression | 
|---|---|
| ssexi | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ssexi.2 | 
. 2
 | |
| 2 | ssexi.1 | 
. . 3
 | |
| 3 | 2 | ssex 4170 | 
. 2
 | 
| 4 | 1, 3 | ax-mp 5 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4151 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 | 
| This theorem is referenced by: zfausab 4175 pp0ex 4222 ord3ex 4223 epse 4377 opabex 5786 mptexw 6170 oprabex 6185 mpoexw 6271 phplem2 6914 phpm 6926 snexxph 7016 sbthlem2 7024 2omotaplemst 7325 niex 7379 enqex 7427 enq0ex 7506 npex 7540 ltnqex 7616 gtnqex 7617 recexprlemell 7689 recexprlemelu 7690 enrex 7804 axcnex 7926 peano5nnnn 7959 reex 8013 nnex 8996 zex 9335 qex 9706 ixxex 9974 iccen 10081 serclim0 11470 climle 11499 iserabs 11640 isumshft 11655 explecnv 11670 prodfclim1 11709 prmex 12281 exmidunben 12643 prdsex 12940 fngsum 13031 igsumvalx 13032 metuex 14111 cnfldstr 14114 cnfldle 14123 znval 14192 znle 14193 znbaslemnn 14195 istopon 14249 dmtopon 14259 lmres 14484 climcncf 14820 reldvg 14915 | 
| Copyright terms: Public domain | W3C validator |