| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssexi | Unicode version | ||
| Description: The subset of a set is also a set. (Contributed by NM, 9-Sep-1993.) |
| Ref | Expression |
|---|---|
| ssexi.1 |
|
| ssexi.2 |
|
| Ref | Expression |
|---|---|
| ssexi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssexi.2 |
. 2
| |
| 2 | ssexi.1 |
. . 3
| |
| 3 | 2 | ssex 4197 |
. 2
|
| 4 | 1, 3 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-sep 4178 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-in 3180 df-ss 3187 |
| This theorem is referenced by: zfausab 4202 pp0ex 4249 ord3ex 4250 epse 4407 opabex 5831 mptexw 6221 oprabex 6236 mpoexw 6322 phplem2 6975 phpm 6988 snexxph 7078 sbthlem2 7086 2omotaplemst 7405 niex 7460 enqex 7508 enq0ex 7587 npex 7621 ltnqex 7697 gtnqex 7698 recexprlemell 7770 recexprlemelu 7771 enrex 7885 axcnex 8007 peano5nnnn 8040 reex 8094 nnex 9077 zex 9416 qex 9788 ixxex 10056 iccen 10163 serclim0 11731 climle 11760 iserabs 11901 isumshft 11916 explecnv 11931 prodfclim1 11970 prmex 12550 exmidunben 12912 prdsex 13216 prdsval 13220 fngsum 13335 igsumvalx 13336 metuex 14432 cnfldstr 14435 cnfldle 14444 znval 14513 znle 14514 znbaslemnn 14516 istopon 14600 dmtopon 14610 lmres 14835 climcncf 15171 reldvg 15266 |
| Copyright terms: Public domain | W3C validator |