ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssexi Unicode version

Theorem ssexi 4120
Description: The subset of a set is also a set. (Contributed by NM, 9-Sep-1993.)
Hypotheses
Ref Expression
ssexi.1  |-  B  e. 
_V
ssexi.2  |-  A  C_  B
Assertion
Ref Expression
ssexi  |-  A  e. 
_V

Proof of Theorem ssexi
StepHypRef Expression
1 ssexi.2 . 2  |-  A  C_  B
2 ssexi.1 . . 3  |-  B  e. 
_V
32ssex 4119 . 2  |-  ( A 
C_  B  ->  A  e.  _V )
41, 3ax-mp 5 1  |-  A  e. 
_V
Colors of variables: wff set class
Syntax hints:    e. wcel 2136   _Vcvv 2726    C_ wss 3116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-sep 4100
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-in 3122  df-ss 3129
This theorem is referenced by:  zfausab  4124  pp0ex  4168  ord3ex  4169  epse  4320  opabex  5709  mptexw  6081  oprabex  6096  mpoexw  6181  phplem2  6819  phpm  6831  snexxph  6915  sbthlem2  6923  niex  7253  enqex  7301  enq0ex  7380  npex  7414  ltnqex  7490  gtnqex  7491  recexprlemell  7563  recexprlemelu  7564  enrex  7678  axcnex  7800  peano5nnnn  7833  reex  7887  nnex  8863  zex  9200  qex  9570  ixxex  9835  iccen  9942  serclim0  11246  climle  11275  iserabs  11416  isumshft  11431  explecnv  11446  prodfclim1  11485  prmex  12045  exmidunben  12359  istopon  12651  dmtopon  12661  lmres  12888  climcncf  13211  reldvg  13288
  Copyright terms: Public domain W3C validator