| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssexi | Unicode version | ||
| Description: The subset of a set is also a set. (Contributed by NM, 9-Sep-1993.) |
| Ref | Expression |
|---|---|
| ssexi.1 |
|
| ssexi.2 |
|
| Ref | Expression |
|---|---|
| ssexi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssexi.2 |
. 2
| |
| 2 | ssexi.1 |
. . 3
| |
| 3 | 2 | ssex 4221 |
. 2
|
| 4 | 1, 3 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4202 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 df-ss 3210 |
| This theorem is referenced by: zfausab 4226 pp0ex 4273 ord3ex 4274 epse 4433 opabex 5863 mptexw 6258 oprabex 6273 mpoexw 6359 phplem2 7014 phpm 7027 snexxph 7117 sbthlem2 7125 2omotaplemst 7444 niex 7499 enqex 7547 enq0ex 7626 npex 7660 ltnqex 7736 gtnqex 7737 recexprlemell 7809 recexprlemelu 7810 enrex 7924 axcnex 8046 peano5nnnn 8079 reex 8133 nnex 9116 zex 9455 qex 9827 ixxex 10095 iccen 10202 serclim0 11816 climle 11845 iserabs 11986 isumshft 12001 explecnv 12016 prodfclim1 12055 prmex 12635 exmidunben 12997 prdsex 13302 prdsval 13306 fngsum 13421 igsumvalx 13422 metuex 14519 cnfldstr 14522 cnfldle 14531 znval 14600 znle 14601 znbaslemnn 14603 istopon 14687 dmtopon 14697 lmres 14922 climcncf 15258 reldvg 15353 |
| Copyright terms: Public domain | W3C validator |