Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssexi | Unicode version |
Description: The subset of a set is also a set. (Contributed by NM, 9-Sep-1993.) |
Ref | Expression |
---|---|
ssexi.1 | |
ssexi.2 |
Ref | Expression |
---|---|
ssexi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssexi.2 | . 2 | |
2 | ssexi.1 | . . 3 | |
3 | 2 | ssex 4126 | . 2 |
4 | 1, 3 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2141 cvv 2730 wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-sep 4107 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-in 3127 df-ss 3134 |
This theorem is referenced by: zfausab 4131 pp0ex 4175 ord3ex 4176 epse 4327 opabex 5720 mptexw 6092 oprabex 6107 mpoexw 6192 phplem2 6831 phpm 6843 snexxph 6927 sbthlem2 6935 niex 7274 enqex 7322 enq0ex 7401 npex 7435 ltnqex 7511 gtnqex 7512 recexprlemell 7584 recexprlemelu 7585 enrex 7699 axcnex 7821 peano5nnnn 7854 reex 7908 nnex 8884 zex 9221 qex 9591 ixxex 9856 iccen 9963 serclim0 11268 climle 11297 iserabs 11438 isumshft 11453 explecnv 11468 prodfclim1 11507 prmex 12067 exmidunben 12381 istopon 12805 dmtopon 12815 lmres 13042 climcncf 13365 reldvg 13442 |
Copyright terms: Public domain | W3C validator |