| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssexi | Unicode version | ||
| Description: The subset of a set is also a set. (Contributed by NM, 9-Sep-1993.) |
| Ref | Expression |
|---|---|
| ssexi.1 |
|
| ssexi.2 |
|
| Ref | Expression |
|---|---|
| ssexi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssexi.2 |
. 2
| |
| 2 | ssexi.1 |
. . 3
| |
| 3 | 2 | ssex 4171 |
. 2
|
| 4 | 1, 3 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 |
| This theorem is referenced by: zfausab 4176 pp0ex 4223 ord3ex 4224 epse 4378 opabex 5789 mptexw 6179 oprabex 6194 mpoexw 6280 phplem2 6923 phpm 6935 snexxph 7025 sbthlem2 7033 2omotaplemst 7341 niex 7396 enqex 7444 enq0ex 7523 npex 7557 ltnqex 7633 gtnqex 7634 recexprlemell 7706 recexprlemelu 7707 enrex 7821 axcnex 7943 peano5nnnn 7976 reex 8030 nnex 9013 zex 9352 qex 9723 ixxex 9991 iccen 10098 serclim0 11487 climle 11516 iserabs 11657 isumshft 11672 explecnv 11687 prodfclim1 11726 prmex 12306 exmidunben 12668 prdsex 12971 prdsval 12975 fngsum 13090 igsumvalx 13091 metuex 14187 cnfldstr 14190 cnfldle 14199 znval 14268 znle 14269 znbaslemnn 14271 istopon 14333 dmtopon 14343 lmres 14568 climcncf 14904 reldvg 14999 |
| Copyright terms: Public domain | W3C validator |