Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdssex Unicode version

Theorem bdssex 13784
Description: Bounded version of ssex 4119. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bdssex.bd  |- BOUNDED  A
bdssex.1  |-  B  e. 
_V
Assertion
Ref Expression
bdssex  |-  ( A 
C_  B  ->  A  e.  _V )

Proof of Theorem bdssex
StepHypRef Expression
1 df-ss 3129 . 2  |-  ( A 
C_  B  <->  ( A  i^i  B )  =  A )
2 bdssex.bd . . . 4  |- BOUNDED  A
3 bdssex.1 . . . 4  |-  B  e. 
_V
42, 3bdinex2 13782 . . 3  |-  ( A  i^i  B )  e. 
_V
5 eleq1 2229 . . 3  |-  ( ( A  i^i  B )  =  A  ->  (
( A  i^i  B
)  e.  _V  <->  A  e.  _V ) )
64, 5mpbii 147 . 2  |-  ( ( A  i^i  B )  =  A  ->  A  e.  _V )
71, 6sylbi 120 1  |-  ( A 
C_  B  ->  A  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136   _Vcvv 2726    i^i cin 3115    C_ wss 3116  BOUNDED wbdc 13722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-bdsep 13766
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-in 3122  df-ss 3129  df-bdc 13723
This theorem is referenced by:  bdssexi  13785  bdssexg  13786  bdfind  13828
  Copyright terms: Public domain W3C validator