Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdssexi GIF version

Theorem bdssexi 13745
Description: Bounded version of ssexi 4119. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bdssexi.bd BOUNDED 𝐴
bdssexi.1 𝐵 ∈ V
bdssexi.2 𝐴𝐵
Assertion
Ref Expression
bdssexi 𝐴 ∈ V

Proof of Theorem bdssexi
StepHypRef Expression
1 bdssexi.2 . 2 𝐴𝐵
2 bdssexi.bd . . 3 BOUNDED 𝐴
3 bdssexi.1 . . 3 𝐵 ∈ V
42, 3bdssex 13744 . 2 (𝐴𝐵𝐴 ∈ V)
51, 4ax-mp 5 1 𝐴 ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2136  Vcvv 2725  wss 3115  BOUNDED wbdc 13682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-bdsep 13726
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-v 2727  df-in 3121  df-ss 3128  df-bdc 13683
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator