Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdssexi | GIF version |
Description: Bounded version of ssexi 4127. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bdssexi.bd | ⊢ BOUNDED 𝐴 |
bdssexi.1 | ⊢ 𝐵 ∈ V |
bdssexi.2 | ⊢ 𝐴 ⊆ 𝐵 |
Ref | Expression |
---|---|
bdssexi | ⊢ 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdssexi.2 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | bdssexi.bd | . . 3 ⊢ BOUNDED 𝐴 | |
3 | bdssexi.1 | . . 3 ⊢ 𝐵 ∈ V | |
4 | 2, 3 | bdssex 13937 | . 2 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ 𝐴 ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 Vcvv 2730 ⊆ wss 3121 BOUNDED wbdc 13875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-bdsep 13919 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-in 3127 df-ss 3134 df-bdc 13876 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |