| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ddifstab | Unicode version | ||
| Description: A class is equal to its double complement if and only if it is stable (that is, membership in it is a stable property). (Contributed by BJ, 12-Dec-2021.) |
| Ref | Expression |
|---|---|
| ddifstab |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcleq 2190 |
. 2
| |
| 2 | eldif 3166 |
. . . . . . 7
| |
| 3 | vex 2766 |
. . . . . . . 8
| |
| 4 | 3 | biantrur 303 |
. . . . . . 7
|
| 5 | eldif 3166 |
. . . . . . . . 9
| |
| 6 | 3 | biantrur 303 |
. . . . . . . . 9
|
| 7 | 5, 6 | bitr4i 187 |
. . . . . . . 8
|
| 8 | 7 | notbii 669 |
. . . . . . 7
|
| 9 | 2, 4, 8 | 3bitr2i 208 |
. . . . . 6
|
| 10 | 9 | bibi1i 228 |
. . . . 5
|
| 11 | biimp 118 |
. . . . . 6
| |
| 12 | id 19 |
. . . . . . 7
| |
| 13 | notnot 630 |
. . . . . . 7
| |
| 14 | 12, 13 | impbid1 142 |
. . . . . 6
|
| 15 | 11, 14 | impbii 126 |
. . . . 5
|
| 16 | 10, 15 | bitri 184 |
. . . 4
|
| 17 | df-stab 832 |
. . . 4
| |
| 18 | 16, 17 | bitr4i 187 |
. . 3
|
| 19 | 18 | albii 1484 |
. 2
|
| 20 | 1, 19 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |