| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > asymref | Unicode version | ||
| Description: Two ways of saying a
relation is antisymmetric and reflexive.
|
| Ref | Expression |
|---|---|
| asymref |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 4048 |
. . . . . . . . . . 11
| |
| 2 | vex 2776 |
. . . . . . . . . . . 12
| |
| 3 | vex 2776 |
. . . . . . . . . . . 12
| |
| 4 | 2, 3 | opeluu 4501 |
. . . . . . . . . . 11
|
| 5 | 1, 4 | sylbi 121 |
. . . . . . . . . 10
|
| 6 | 5 | simpld 112 |
. . . . . . . . 9
|
| 7 | 6 | adantr 276 |
. . . . . . . 8
|
| 8 | 7 | pm4.71ri 392 |
. . . . . . 7
|
| 9 | 8 | bibi1i 228 |
. . . . . 6
|
| 10 | elin 3357 |
. . . . . . . 8
| |
| 11 | 2, 3 | brcnv 4865 |
. . . . . . . . . 10
|
| 12 | df-br 4048 |
. . . . . . . . . 10
| |
| 13 | 11, 12 | bitr3i 186 |
. . . . . . . . 9
|
| 14 | 1, 13 | anbi12i 460 |
. . . . . . . 8
|
| 15 | 10, 14 | bitr4i 187 |
. . . . . . 7
|
| 16 | 3 | opelres 4969 |
. . . . . . . 8
|
| 17 | df-br 4048 |
. . . . . . . . . 10
| |
| 18 | 3 | ideq 4834 |
. . . . . . . . . 10
|
| 19 | 17, 18 | bitr3i 186 |
. . . . . . . . 9
|
| 20 | 19 | anbi2ci 459 |
. . . . . . . 8
|
| 21 | 16, 20 | bitri 184 |
. . . . . . 7
|
| 22 | 15, 21 | bibi12i 229 |
. . . . . 6
|
| 23 | pm5.32 453 |
. . . . . 6
| |
| 24 | 9, 22, 23 | 3bitr4i 212 |
. . . . 5
|
| 25 | 24 | albii 1494 |
. . . 4
|
| 26 | 19.21v 1897 |
. . . 4
| |
| 27 | 25, 26 | bitri 184 |
. . 3
|
| 28 | 27 | albii 1494 |
. 2
|
| 29 | relcnv 5065 |
. . . 4
| |
| 30 | relin2 4798 |
. . . 4
| |
| 31 | 29, 30 | ax-mp 5 |
. . 3
|
| 32 | relres 4992 |
. . 3
| |
| 33 | eqrel 4768 |
. . 3
| |
| 34 | 31, 32, 33 | mp2an 426 |
. 2
|
| 35 | df-ral 2490 |
. 2
| |
| 36 | 28, 34, 35 | 3bitr4i 212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-opab 4110 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-res 4691 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |