Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > asymref | Unicode version |
Description: Two ways of saying a relation is antisymmetric and reflexive. is the field of a relation by relfld 5132. (Contributed by NM, 6-May-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
asymref |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 3983 | . . . . . . . . . . 11 | |
2 | vex 2729 | . . . . . . . . . . . 12 | |
3 | vex 2729 | . . . . . . . . . . . 12 | |
4 | 2, 3 | opeluu 4428 | . . . . . . . . . . 11 |
5 | 1, 4 | sylbi 120 | . . . . . . . . . 10 |
6 | 5 | simpld 111 | . . . . . . . . 9 |
7 | 6 | adantr 274 | . . . . . . . 8 |
8 | 7 | pm4.71ri 390 | . . . . . . 7 |
9 | 8 | bibi1i 227 | . . . . . 6 |
10 | elin 3305 | . . . . . . . 8 | |
11 | 2, 3 | brcnv 4787 | . . . . . . . . . 10 |
12 | df-br 3983 | . . . . . . . . . 10 | |
13 | 11, 12 | bitr3i 185 | . . . . . . . . 9 |
14 | 1, 13 | anbi12i 456 | . . . . . . . 8 |
15 | 10, 14 | bitr4i 186 | . . . . . . 7 |
16 | 3 | opelres 4889 | . . . . . . . 8 |
17 | df-br 3983 | . . . . . . . . . 10 | |
18 | 3 | ideq 4756 | . . . . . . . . . 10 |
19 | 17, 18 | bitr3i 185 | . . . . . . . . 9 |
20 | 19 | anbi2ci 455 | . . . . . . . 8 |
21 | 16, 20 | bitri 183 | . . . . . . 7 |
22 | 15, 21 | bibi12i 228 | . . . . . 6 |
23 | pm5.32 449 | . . . . . 6 | |
24 | 9, 22, 23 | 3bitr4i 211 | . . . . 5 |
25 | 24 | albii 1458 | . . . 4 |
26 | 19.21v 1861 | . . . 4 | |
27 | 25, 26 | bitri 183 | . . 3 |
28 | 27 | albii 1458 | . 2 |
29 | relcnv 4982 | . . . 4 | |
30 | relin2 4723 | . . . 4 | |
31 | 29, 30 | ax-mp 5 | . . 3 |
32 | relres 4912 | . . 3 | |
33 | eqrel 4693 | . . 3 | |
34 | 31, 32, 33 | mp2an 423 | . 2 |
35 | df-ral 2449 | . 2 | |
36 | 28, 34, 35 | 3bitr4i 211 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1341 wceq 1343 wcel 2136 wral 2444 cin 3115 cop 3579 cuni 3789 class class class wbr 3982 cid 4266 ccnv 4603 cres 4606 wrel 4609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-res 4616 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |