| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > asymref | Unicode version | ||
| Description: Two ways of saying a
relation is antisymmetric and reflexive.
        | 
| Ref | Expression | 
|---|---|
| asymref | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-br 4034 | 
. . . . . . . . . . 11
 | |
| 2 | vex 2766 | 
. . . . . . . . . . . 12
 | |
| 3 | vex 2766 | 
. . . . . . . . . . . 12
 | |
| 4 | 2, 3 | opeluu 4485 | 
. . . . . . . . . . 11
 | 
| 5 | 1, 4 | sylbi 121 | 
. . . . . . . . . 10
 | 
| 6 | 5 | simpld 112 | 
. . . . . . . . 9
 | 
| 7 | 6 | adantr 276 | 
. . . . . . . 8
 | 
| 8 | 7 | pm4.71ri 392 | 
. . . . . . 7
 | 
| 9 | 8 | bibi1i 228 | 
. . . . . 6
 | 
| 10 | elin 3346 | 
. . . . . . . 8
 | |
| 11 | 2, 3 | brcnv 4849 | 
. . . . . . . . . 10
 | 
| 12 | df-br 4034 | 
. . . . . . . . . 10
 | |
| 13 | 11, 12 | bitr3i 186 | 
. . . . . . . . 9
 | 
| 14 | 1, 13 | anbi12i 460 | 
. . . . . . . 8
 | 
| 15 | 10, 14 | bitr4i 187 | 
. . . . . . 7
 | 
| 16 | 3 | opelres 4951 | 
. . . . . . . 8
 | 
| 17 | df-br 4034 | 
. . . . . . . . . 10
 | |
| 18 | 3 | ideq 4818 | 
. . . . . . . . . 10
 | 
| 19 | 17, 18 | bitr3i 186 | 
. . . . . . . . 9
 | 
| 20 | 19 | anbi2ci 459 | 
. . . . . . . 8
 | 
| 21 | 16, 20 | bitri 184 | 
. . . . . . 7
 | 
| 22 | 15, 21 | bibi12i 229 | 
. . . . . 6
 | 
| 23 | pm5.32 453 | 
. . . . . 6
 | |
| 24 | 9, 22, 23 | 3bitr4i 212 | 
. . . . 5
 | 
| 25 | 24 | albii 1484 | 
. . . 4
 | 
| 26 | 19.21v 1887 | 
. . . 4
 | |
| 27 | 25, 26 | bitri 184 | 
. . 3
 | 
| 28 | 27 | albii 1484 | 
. 2
 | 
| 29 | relcnv 5047 | 
. . . 4
 | |
| 30 | relin2 4782 | 
. . . 4
 | |
| 31 | 29, 30 | ax-mp 5 | 
. . 3
 | 
| 32 | relres 4974 | 
. . 3
 | |
| 33 | eqrel 4752 | 
. . 3
 | |
| 34 | 31, 32, 33 | mp2an 426 | 
. 2
 | 
| 35 | df-ral 2480 | 
. 2
 | |
| 36 | 28, 34, 35 | 3bitr4i 212 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-res 4675 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |