Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > asymref | Unicode version |
Description: Two ways of saying a relation is antisymmetric and reflexive. is the field of a relation by relfld 5139. (Contributed by NM, 6-May-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
asymref |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 3990 | . . . . . . . . . . 11 | |
2 | vex 2733 | . . . . . . . . . . . 12 | |
3 | vex 2733 | . . . . . . . . . . . 12 | |
4 | 2, 3 | opeluu 4435 | . . . . . . . . . . 11 |
5 | 1, 4 | sylbi 120 | . . . . . . . . . 10 |
6 | 5 | simpld 111 | . . . . . . . . 9 |
7 | 6 | adantr 274 | . . . . . . . 8 |
8 | 7 | pm4.71ri 390 | . . . . . . 7 |
9 | 8 | bibi1i 227 | . . . . . 6 |
10 | elin 3310 | . . . . . . . 8 | |
11 | 2, 3 | brcnv 4794 | . . . . . . . . . 10 |
12 | df-br 3990 | . . . . . . . . . 10 | |
13 | 11, 12 | bitr3i 185 | . . . . . . . . 9 |
14 | 1, 13 | anbi12i 457 | . . . . . . . 8 |
15 | 10, 14 | bitr4i 186 | . . . . . . 7 |
16 | 3 | opelres 4896 | . . . . . . . 8 |
17 | df-br 3990 | . . . . . . . . . 10 | |
18 | 3 | ideq 4763 | . . . . . . . . . 10 |
19 | 17, 18 | bitr3i 185 | . . . . . . . . 9 |
20 | 19 | anbi2ci 456 | . . . . . . . 8 |
21 | 16, 20 | bitri 183 | . . . . . . 7 |
22 | 15, 21 | bibi12i 228 | . . . . . 6 |
23 | pm5.32 450 | . . . . . 6 | |
24 | 9, 22, 23 | 3bitr4i 211 | . . . . 5 |
25 | 24 | albii 1463 | . . . 4 |
26 | 19.21v 1866 | . . . 4 | |
27 | 25, 26 | bitri 183 | . . 3 |
28 | 27 | albii 1463 | . 2 |
29 | relcnv 4989 | . . . 4 | |
30 | relin2 4730 | . . . 4 | |
31 | 29, 30 | ax-mp 5 | . . 3 |
32 | relres 4919 | . . 3 | |
33 | eqrel 4700 | . . 3 | |
34 | 31, 32, 33 | mp2an 424 | . 2 |
35 | df-ral 2453 | . 2 | |
36 | 28, 34, 35 | 3bitr4i 211 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1346 wceq 1348 wcel 2141 wral 2448 cin 3120 cop 3586 cuni 3796 class class class wbr 3989 cid 4273 ccnv 4610 cres 4613 wrel 4616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-res 4623 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |