ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  asymref Unicode version

Theorem asymref 4919
Description: Two ways of saying a relation is antisymmetric and reflexive.  U. U. R is the field of a relation by relfld 5062. (Contributed by NM, 6-May-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
asymref  |-  ( ( R  i^i  `' R
)  =  (  _I  |`  U. U. R )  <->  A. x  e.  U. U. R A. y ( ( x R y  /\  y R x )  <->  x  =  y ) )
Distinct variable group:    x, y, R

Proof of Theorem asymref
StepHypRef Expression
1 df-br 3925 . . . . . . . . . . 11  |-  ( x R y  <->  <. x ,  y >.  e.  R
)
2 vex 2684 . . . . . . . . . . . 12  |-  x  e. 
_V
3 vex 2684 . . . . . . . . . . . 12  |-  y  e. 
_V
42, 3opeluu 4366 . . . . . . . . . . 11  |-  ( <.
x ,  y >.  e.  R  ->  ( x  e.  U. U. R  /\  y  e.  U. U. R ) )
51, 4sylbi 120 . . . . . . . . . 10  |-  ( x R y  ->  (
x  e.  U. U. R  /\  y  e.  U. U. R ) )
65simpld 111 . . . . . . . . 9  |-  ( x R y  ->  x  e.  U. U. R )
76adantr 274 . . . . . . . 8  |-  ( ( x R y  /\  y R x )  ->  x  e.  U. U. R
)
87pm4.71ri 389 . . . . . . 7  |-  ( ( x R y  /\  y R x )  <->  ( x  e.  U. U. R  /\  ( x R y  /\  y R x ) ) )
98bibi1i 227 . . . . . 6  |-  ( ( ( x R y  /\  y R x )  <->  ( x  e. 
U. U. R  /\  x  =  y ) )  <-> 
( ( x  e. 
U. U. R  /\  (
x R y  /\  y R x ) )  <-> 
( x  e.  U. U. R  /\  x  =  y ) ) )
10 elin 3254 . . . . . . . 8  |-  ( <.
x ,  y >.  e.  ( R  i^i  `' R )  <->  ( <. x ,  y >.  e.  R  /\  <. x ,  y
>.  e.  `' R ) )
112, 3brcnv 4717 . . . . . . . . . 10  |-  ( x `' R y  <->  y R x )
12 df-br 3925 . . . . . . . . . 10  |-  ( x `' R y  <->  <. x ,  y >.  e.  `' R )
1311, 12bitr3i 185 . . . . . . . . 9  |-  ( y R x  <->  <. x ,  y >.  e.  `' R )
141, 13anbi12i 455 . . . . . . . 8  |-  ( ( x R y  /\  y R x )  <->  ( <. x ,  y >.  e.  R  /\  <. x ,  y
>.  e.  `' R ) )
1510, 14bitr4i 186 . . . . . . 7  |-  ( <.
x ,  y >.  e.  ( R  i^i  `' R )  <->  ( x R y  /\  y R x ) )
163opelres 4819 . . . . . . . 8  |-  ( <.
x ,  y >.  e.  (  _I  |`  U. U. R )  <->  ( <. x ,  y >.  e.  _I  /\  x  e.  U. U. R ) )
17 df-br 3925 . . . . . . . . . 10  |-  ( x  _I  y  <->  <. x ,  y >.  e.  _I  )
183ideq 4686 . . . . . . . . . 10  |-  ( x  _I  y  <->  x  =  y )
1917, 18bitr3i 185 . . . . . . . . 9  |-  ( <.
x ,  y >.  e.  _I  <->  x  =  y
)
2019anbi2ci 454 . . . . . . . 8  |-  ( (
<. x ,  y >.  e.  _I  /\  x  e. 
U. U. R )  <->  ( x  e.  U. U. R  /\  x  =  y )
)
2116, 20bitri 183 . . . . . . 7  |-  ( <.
x ,  y >.  e.  (  _I  |`  U. U. R )  <->  ( x  e.  U. U. R  /\  x  =  y )
)
2215, 21bibi12i 228 . . . . . 6  |-  ( (
<. x ,  y >.  e.  ( R  i^i  `' R )  <->  <. x ,  y >.  e.  (  _I  |`  U. U. R
) )  <->  ( (
x R y  /\  y R x )  <->  ( x  e.  U. U. R  /\  x  =  y )
) )
23 pm5.32 448 . . . . . 6  |-  ( ( x  e.  U. U. R  ->  ( ( x R y  /\  y R x )  <->  x  =  y ) )  <->  ( (
x  e.  U. U. R  /\  ( x R y  /\  y R x ) )  <->  ( x  e.  U. U. R  /\  x  =  y )
) )
249, 22, 233bitr4i 211 . . . . 5  |-  ( (
<. x ,  y >.  e.  ( R  i^i  `' R )  <->  <. x ,  y >.  e.  (  _I  |`  U. U. R
) )  <->  ( x  e.  U. U. R  -> 
( ( x R y  /\  y R x )  <->  x  =  y ) ) )
2524albii 1446 . . . 4  |-  ( A. y ( <. x ,  y >.  e.  ( R  i^i  `' R
)  <->  <. x ,  y
>.  e.  (  _I  |`  U. U. R ) )  <->  A. y
( x  e.  U. U. R  ->  ( (
x R y  /\  y R x )  <->  x  =  y ) ) )
26 19.21v 1845 . . . 4  |-  ( A. y ( x  e. 
U. U. R  ->  (
( x R y  /\  y R x )  <->  x  =  y
) )  <->  ( x  e.  U. U. R  ->  A. y ( ( x R y  /\  y R x )  <->  x  =  y ) ) )
2725, 26bitri 183 . . 3  |-  ( A. y ( <. x ,  y >.  e.  ( R  i^i  `' R
)  <->  <. x ,  y
>.  e.  (  _I  |`  U. U. R ) )  <->  ( x  e.  U. U. R  ->  A. y ( ( x R y  /\  y R x )  <->  x  =  y ) ) )
2827albii 1446 . 2  |-  ( A. x A. y ( <.
x ,  y >.  e.  ( R  i^i  `' R )  <->  <. x ,  y >.  e.  (  _I  |`  U. U. R
) )  <->  A. x
( x  e.  U. U. R  ->  A. y
( ( x R y  /\  y R x )  <->  x  =  y ) ) )
29 relcnv 4912 . . . 4  |-  Rel  `' R
30 relin2 4653 . . . 4  |-  ( Rel  `' R  ->  Rel  ( R  i^i  `' R ) )
3129, 30ax-mp 5 . . 3  |-  Rel  ( R  i^i  `' R )
32 relres 4842 . . 3  |-  Rel  (  _I  |`  U. U. R
)
33 eqrel 4623 . . 3  |-  ( ( Rel  ( R  i^i  `' R )  /\  Rel  (  _I  |`  U. U. R ) )  -> 
( ( R  i^i  `' R )  =  (  _I  |`  U. U. R
)  <->  A. x A. y
( <. x ,  y
>.  e.  ( R  i^i  `' R )  <->  <. x ,  y >.  e.  (  _I  |`  U. U. R
) ) ) )
3431, 32, 33mp2an 422 . 2  |-  ( ( R  i^i  `' R
)  =  (  _I  |`  U. U. R )  <->  A. x A. y (
<. x ,  y >.  e.  ( R  i^i  `' R )  <->  <. x ,  y >.  e.  (  _I  |`  U. U. R
) ) )
35 df-ral 2419 . 2  |-  ( A. x  e.  U. U. R A. y ( ( x R y  /\  y R x )  <->  x  =  y )  <->  A. x
( x  e.  U. U. R  ->  A. y
( ( x R y  /\  y R x )  <->  x  =  y ) ) )
3628, 34, 353bitr4i 211 1  |-  ( ( R  i^i  `' R
)  =  (  _I  |`  U. U. R )  <->  A. x  e.  U. U. R A. y ( ( x R y  /\  y R x )  <->  x  =  y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1329    = wceq 1331    e. wcel 1480   A.wral 2414    i^i cin 3065   <.cop 3525   U.cuni 3731   class class class wbr 3924    _I cid 4205   `'ccnv 4533    |` cres 4536   Rel wrel 4539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-res 4546
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator