| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > asymref | Unicode version | ||
| Description: Two ways of saying a
relation is antisymmetric and reflexive.
|
| Ref | Expression |
|---|---|
| asymref |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 4083 |
. . . . . . . . . . 11
| |
| 2 | vex 2802 |
. . . . . . . . . . . 12
| |
| 3 | vex 2802 |
. . . . . . . . . . . 12
| |
| 4 | 2, 3 | opeluu 4540 |
. . . . . . . . . . 11
|
| 5 | 1, 4 | sylbi 121 |
. . . . . . . . . 10
|
| 6 | 5 | simpld 112 |
. . . . . . . . 9
|
| 7 | 6 | adantr 276 |
. . . . . . . 8
|
| 8 | 7 | pm4.71ri 392 |
. . . . . . 7
|
| 9 | 8 | bibi1i 228 |
. . . . . 6
|
| 10 | elin 3387 |
. . . . . . . 8
| |
| 11 | 2, 3 | brcnv 4904 |
. . . . . . . . . 10
|
| 12 | df-br 4083 |
. . . . . . . . . 10
| |
| 13 | 11, 12 | bitr3i 186 |
. . . . . . . . 9
|
| 14 | 1, 13 | anbi12i 460 |
. . . . . . . 8
|
| 15 | 10, 14 | bitr4i 187 |
. . . . . . 7
|
| 16 | 3 | opelres 5009 |
. . . . . . . 8
|
| 17 | df-br 4083 |
. . . . . . . . . 10
| |
| 18 | 3 | ideq 4873 |
. . . . . . . . . 10
|
| 19 | 17, 18 | bitr3i 186 |
. . . . . . . . 9
|
| 20 | 19 | anbi2ci 459 |
. . . . . . . 8
|
| 21 | 16, 20 | bitri 184 |
. . . . . . 7
|
| 22 | 15, 21 | bibi12i 229 |
. . . . . 6
|
| 23 | pm5.32 453 |
. . . . . 6
| |
| 24 | 9, 22, 23 | 3bitr4i 212 |
. . . . 5
|
| 25 | 24 | albii 1516 |
. . . 4
|
| 26 | 19.21v 1919 |
. . . 4
| |
| 27 | 25, 26 | bitri 184 |
. . 3
|
| 28 | 27 | albii 1516 |
. 2
|
| 29 | relcnv 5105 |
. . . 4
| |
| 30 | relin2 4837 |
. . . 4
| |
| 31 | 29, 30 | ax-mp 5 |
. . 3
|
| 32 | relres 5032 |
. . 3
| |
| 33 | eqrel 4807 |
. . 3
| |
| 34 | 31, 32, 33 | mp2an 426 |
. 2
|
| 35 | df-ral 2513 |
. 2
| |
| 36 | 28, 34, 35 | 3bitr4i 212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-res 4730 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |