| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssequn1 | Unicode version | ||
| Description: A relationship between subclass and union. Theorem 26 of [Suppes] p. 27. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| ssequn1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bicom 140 |
. . . 4
| |
| 2 | pm4.72 829 |
. . . 4
| |
| 3 | elun 3322 |
. . . . 5
| |
| 4 | 3 | bibi1i 228 |
. . . 4
|
| 5 | 1, 2, 4 | 3bitr4i 212 |
. . 3
|
| 6 | 5 | albii 1494 |
. 2
|
| 7 | ssalel 3189 |
. 2
| |
| 8 | dfcleq 2201 |
. 2
| |
| 9 | 6, 7, 8 | 3bitr4i 212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 |
| This theorem is referenced by: ssequn2 3354 uniop 4318 pwssunim 4349 unisuc 4478 unisucg 4479 rdgisucinc 6494 oasuc 6573 omsuc 6581 undifdc 7047 |
| Copyright terms: Public domain | W3C validator |