Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssequn1 | Unicode version |
Description: A relationship between subclass and union. Theorem 26 of [Suppes] p. 27. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
ssequn1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicom 140 | . . . 4 | |
2 | pm4.72 827 | . . . 4 | |
3 | elun 3274 | . . . . 5 | |
4 | 3 | bibi1i 228 | . . . 4 |
5 | 1, 2, 4 | 3bitr4i 212 | . . 3 |
6 | 5 | albii 1468 | . 2 |
7 | dfss2 3142 | . 2 | |
8 | dfcleq 2169 | . 2 | |
9 | 6, 7, 8 | 3bitr4i 212 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 105 wo 708 wal 1351 wceq 1353 wcel 2146 cun 3125 wss 3127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 |
This theorem is referenced by: ssequn2 3306 uniop 4249 pwssunim 4278 unisuc 4407 unisucg 4408 rdgisucinc 6376 oasuc 6455 omsuc 6463 undifdc 6913 |
Copyright terms: Public domain | W3C validator |