| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssequn1 | Unicode version | ||
| Description: A relationship between subclass and union. Theorem 26 of [Suppes] p. 27. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| ssequn1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bicom 140 |
. . . 4
| |
| 2 | pm4.72 832 |
. . . 4
| |
| 3 | elun 3345 |
. . . . 5
| |
| 4 | 3 | bibi1i 228 |
. . . 4
|
| 5 | 1, 2, 4 | 3bitr4i 212 |
. . 3
|
| 6 | 5 | albii 1516 |
. 2
|
| 7 | ssalel 3212 |
. 2
| |
| 8 | dfcleq 2223 |
. 2
| |
| 9 | 6, 7, 8 | 3bitr4i 212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 |
| This theorem is referenced by: ssequn2 3377 uniop 4341 pwssunim 4374 unisuc 4503 unisucg 4504 rdgisucinc 6529 oasuc 6608 omsuc 6616 undifdc 7082 |
| Copyright terms: Public domain | W3C validator |