Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elrab3t | Unicode version |
Description: Membership in a restricted class abstraction, using implicit substitution. (Closed theorem version of elrab3 2887.) (Contributed by Thierry Arnoux, 31-Aug-2017.) |
Ref | Expression |
---|---|
elrab3t |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . . 3 | |
2 | nfa1 1534 | . . . . 5 | |
3 | nfv 1521 | . . . . 5 | |
4 | 2, 3 | nfan 1558 | . . . 4 |
5 | simpl 108 | . . . . . 6 | |
6 | 5 | 19.21bi 1551 | . . . . 5 |
7 | eleq1 2233 | . . . . . . . . . 10 | |
8 | 7 | biimparc 297 | . . . . . . . . 9 |
9 | 8 | biantrurd 303 | . . . . . . . 8 |
10 | 9 | bibi1d 232 | . . . . . . 7 |
11 | 10 | pm5.74da 441 | . . . . . 6 |
12 | 11 | adantl 275 | . . . . 5 |
13 | 6, 12 | mpbid 146 | . . . 4 |
14 | 4, 13 | alrimi 1515 | . . 3 |
15 | elabgt 2871 | . . 3 | |
16 | 1, 14, 15 | syl2anc 409 | . 2 |
17 | df-rab 2457 | . . . 4 | |
18 | 17 | eleq2i 2237 | . . 3 |
19 | 18 | bibi1i 227 | . 2 |
20 | 16, 19 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1346 wceq 1348 wcel 2141 cab 2156 crab 2452 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rab 2457 df-v 2732 |
This theorem is referenced by: f1oresrab 5661 |
Copyright terms: Public domain | W3C validator |