Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-vnex Unicode version

Theorem bj-vnex 16171
Description: vnex 4194 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-vnex  |-  -.  E. x  x  =  _V

Proof of Theorem bj-vnex
StepHypRef Expression
1 bj-vprc 16169 . 2  |-  -.  _V  e.  _V
2 isset 2786 . 2  |-  ( _V  e.  _V  <->  E. x  x  =  _V )
31, 2mtbi 674 1  |-  -.  E. x  x  =  _V
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1375   E.wex 1518    e. wcel 2180   _Vcvv 2779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-5 1473  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-13 2182  ax-14 2183  ax-ext 2191  ax-bdn 16090  ax-bdel 16094  ax-bdsep 16157
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-v 2781
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator