![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-vnex | GIF version |
Description: vnex 4149 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-vnex | ⊢ ¬ ∃𝑥 𝑥 = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-vprc 15045 | . 2 ⊢ ¬ V ∈ V | |
2 | isset 2758 | . 2 ⊢ (V ∈ V ↔ ∃𝑥 𝑥 = V) | |
3 | 1, 2 | mtbi 671 | 1 ⊢ ¬ ∃𝑥 𝑥 = V |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 = wceq 1364 ∃wex 1503 ∈ wcel 2160 Vcvv 2752 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-13 2162 ax-14 2163 ax-ext 2171 ax-bdn 14966 ax-bdel 14970 ax-bdsep 15033 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-v 2754 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |