Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-vnex GIF version

Theorem bj-vnex 15335
Description: vnex 4160 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-vnex ¬ ∃𝑥 𝑥 = V

Proof of Theorem bj-vnex
StepHypRef Expression
1 bj-vprc 15333 . 2 ¬ V ∈ V
2 isset 2766 . 2 (V ∈ V ↔ ∃𝑥 𝑥 = V)
31, 2mtbi 671 1 ¬ ∃𝑥 𝑥 = V
Colors of variables: wff set class
Syntax hints:  ¬ wn 3   = wceq 1364  wex 1503  wcel 2164  Vcvv 2760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-13 2166  ax-14 2167  ax-ext 2175  ax-bdn 15254  ax-bdel 15258  ax-bdsep 15321
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-v 2762
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator