| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-vnex | GIF version | ||
| Description: vnex 4191 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-vnex | ⊢ ¬ ∃𝑥 𝑥 = V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-vprc 16031 | . 2 ⊢ ¬ V ∈ V | |
| 2 | isset 2783 | . 2 ⊢ (V ∈ V ↔ ∃𝑥 𝑥 = V) | |
| 3 | 1, 2 | mtbi 672 | 1 ⊢ ¬ ∃𝑥 𝑥 = V |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 = wceq 1373 ∃wex 1516 ∈ wcel 2178 Vcvv 2776 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-13 2180 ax-14 2181 ax-ext 2189 ax-bdn 15952 ax-bdel 15956 ax-bdsep 16019 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-v 2778 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |