| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-vnex | GIF version | ||
| Description: vnex 4175 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-vnex | ⊢ ¬ ∃𝑥 𝑥 = V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-vprc 15832 | . 2 ⊢ ¬ V ∈ V | |
| 2 | isset 2778 | . 2 ⊢ (V ∈ V ↔ ∃𝑥 𝑥 = V) | |
| 3 | 1, 2 | mtbi 672 | 1 ⊢ ¬ ∃𝑥 𝑥 = V |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 = wceq 1373 ∃wex 1515 ∈ wcel 2176 Vcvv 2772 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-13 2178 ax-14 2179 ax-ext 2187 ax-bdn 15753 ax-bdel 15757 ax-bdsep 15820 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-v 2774 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |