| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-vnex | GIF version | ||
| Description: vnex 4164 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-vnex | ⊢ ¬ ∃𝑥 𝑥 = V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-vprc 15542 | . 2 ⊢ ¬ V ∈ V | |
| 2 | isset 2769 | . 2 ⊢ (V ∈ V ↔ ∃𝑥 𝑥 = V) | |
| 3 | 1, 2 | mtbi 671 | 1 ⊢ ¬ ∃𝑥 𝑥 = V |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 = wceq 1364 ∃wex 1506 ∈ wcel 2167 Vcvv 2763 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-13 2169 ax-14 2170 ax-ext 2178 ax-bdn 15463 ax-bdel 15467 ax-bdsep 15530 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |