Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-vnex GIF version

Theorem bj-vnex 15834
Description: vnex 4175 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-vnex ¬ ∃𝑥 𝑥 = V

Proof of Theorem bj-vnex
StepHypRef Expression
1 bj-vprc 15832 . 2 ¬ V ∈ V
2 isset 2778 . 2 (V ∈ V ↔ ∃𝑥 𝑥 = V)
31, 2mtbi 672 1 ¬ ∃𝑥 𝑥 = V
Colors of variables: wff set class
Syntax hints:  ¬ wn 3   = wceq 1373  wex 1515  wcel 2176  Vcvv 2772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1470  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-13 2178  ax-14 2179  ax-ext 2187  ax-bdn 15753  ax-bdel 15757  ax-bdsep 15820
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-v 2774
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator