Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdinex1 Unicode version

Theorem bdinex1 13781
Description: Bounded version of inex1 4116. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bdinex1.bd  |- BOUNDED  B
bdinex1.1  |-  A  e. 
_V
Assertion
Ref Expression
bdinex1  |-  ( A  i^i  B )  e. 
_V

Proof of Theorem bdinex1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bdinex1.1 . . . 4  |-  A  e. 
_V
2 bdinex1.bd . . . . . 6  |- BOUNDED  B
32bdeli 13728 . . . . 5  |- BOUNDED  y  e.  B
43bdzfauscl 13772 . . . 4  |-  ( A  e.  _V  ->  E. x A. y ( y  e.  x  <->  ( y  e.  A  /\  y  e.  B ) ) )
51, 4ax-mp 5 . . 3  |-  E. x A. y ( y  e.  x  <->  ( y  e.  A  /\  y  e.  B ) )
6 dfcleq 2159 . . . . 5  |-  ( x  =  ( A  i^i  B )  <->  A. y ( y  e.  x  <->  y  e.  ( A  i^i  B ) ) )
7 elin 3305 . . . . . . 7  |-  ( y  e.  ( A  i^i  B )  <->  ( y  e.  A  /\  y  e.  B ) )
87bibi2i 226 . . . . . 6  |-  ( ( y  e.  x  <->  y  e.  ( A  i^i  B ) )  <->  ( y  e.  x  <->  ( y  e.  A  /\  y  e.  B ) ) )
98albii 1458 . . . . 5  |-  ( A. y ( y  e.  x  <->  y  e.  ( A  i^i  B ) )  <->  A. y ( y  e.  x  <->  ( y  e.  A  /\  y  e.  B ) ) )
106, 9bitri 183 . . . 4  |-  ( x  =  ( A  i^i  B )  <->  A. y ( y  e.  x  <->  ( y  e.  A  /\  y  e.  B ) ) )
1110exbii 1593 . . 3  |-  ( E. x  x  =  ( A  i^i  B )  <->  E. x A. y ( y  e.  x  <->  ( y  e.  A  /\  y  e.  B ) ) )
125, 11mpbir 145 . 2  |-  E. x  x  =  ( A  i^i  B )
1312issetri 2735 1  |-  ( A  i^i  B )  e. 
_V
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104   A.wal 1341    = wceq 1343   E.wex 1480    e. wcel 2136   _Vcvv 2726    i^i cin 3115  BOUNDED wbdc 13722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-bdsep 13766
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-in 3122  df-bdc 13723
This theorem is referenced by:  bdinex2  13782  bdinex1g  13783  bdpeano5  13825
  Copyright terms: Public domain W3C validator