Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdinex1 Unicode version

Theorem bdinex1 14191
Description: Bounded version of inex1 4132. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bdinex1.bd  |- BOUNDED  B
bdinex1.1  |-  A  e. 
_V
Assertion
Ref Expression
bdinex1  |-  ( A  i^i  B )  e. 
_V

Proof of Theorem bdinex1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bdinex1.1 . . . 4  |-  A  e. 
_V
2 bdinex1.bd . . . . . 6  |- BOUNDED  B
32bdeli 14138 . . . . 5  |- BOUNDED  y  e.  B
43bdzfauscl 14182 . . . 4  |-  ( A  e.  _V  ->  E. x A. y ( y  e.  x  <->  ( y  e.  A  /\  y  e.  B ) ) )
51, 4ax-mp 5 . . 3  |-  E. x A. y ( y  e.  x  <->  ( y  e.  A  /\  y  e.  B ) )
6 dfcleq 2169 . . . . 5  |-  ( x  =  ( A  i^i  B )  <->  A. y ( y  e.  x  <->  y  e.  ( A  i^i  B ) ) )
7 elin 3316 . . . . . . 7  |-  ( y  e.  ( A  i^i  B )  <->  ( y  e.  A  /\  y  e.  B ) )
87bibi2i 227 . . . . . 6  |-  ( ( y  e.  x  <->  y  e.  ( A  i^i  B ) )  <->  ( y  e.  x  <->  ( y  e.  A  /\  y  e.  B ) ) )
98albii 1468 . . . . 5  |-  ( A. y ( y  e.  x  <->  y  e.  ( A  i^i  B ) )  <->  A. y ( y  e.  x  <->  ( y  e.  A  /\  y  e.  B ) ) )
106, 9bitri 184 . . . 4  |-  ( x  =  ( A  i^i  B )  <->  A. y ( y  e.  x  <->  ( y  e.  A  /\  y  e.  B ) ) )
1110exbii 1603 . . 3  |-  ( E. x  x  =  ( A  i^i  B )  <->  E. x A. y ( y  e.  x  <->  ( y  e.  A  /\  y  e.  B ) ) )
125, 11mpbir 146 . 2  |-  E. x  x  =  ( A  i^i  B )
1312issetri 2744 1  |-  ( A  i^i  B )  e. 
_V
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   A.wal 1351    = wceq 1353   E.wex 1490    e. wcel 2146   _Vcvv 2735    i^i cin 3126  BOUNDED wbdc 14132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157  ax-bdsep 14176
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-v 2737  df-in 3133  df-bdc 14133
This theorem is referenced by:  bdinex2  14192  bdinex1g  14193  bdpeano5  14235
  Copyright terms: Public domain W3C validator