Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdinex1 Unicode version

Theorem bdinex1 15545
Description: Bounded version of inex1 4167. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bdinex1.bd  |- BOUNDED  B
bdinex1.1  |-  A  e. 
_V
Assertion
Ref Expression
bdinex1  |-  ( A  i^i  B )  e. 
_V

Proof of Theorem bdinex1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bdinex1.1 . . . 4  |-  A  e. 
_V
2 bdinex1.bd . . . . . 6  |- BOUNDED  B
32bdeli 15492 . . . . 5  |- BOUNDED  y  e.  B
43bdzfauscl 15536 . . . 4  |-  ( A  e.  _V  ->  E. x A. y ( y  e.  x  <->  ( y  e.  A  /\  y  e.  B ) ) )
51, 4ax-mp 5 . . 3  |-  E. x A. y ( y  e.  x  <->  ( y  e.  A  /\  y  e.  B ) )
6 dfcleq 2190 . . . . 5  |-  ( x  =  ( A  i^i  B )  <->  A. y ( y  e.  x  <->  y  e.  ( A  i^i  B ) ) )
7 elin 3346 . . . . . . 7  |-  ( y  e.  ( A  i^i  B )  <->  ( y  e.  A  /\  y  e.  B ) )
87bibi2i 227 . . . . . 6  |-  ( ( y  e.  x  <->  y  e.  ( A  i^i  B ) )  <->  ( y  e.  x  <->  ( y  e.  A  /\  y  e.  B ) ) )
98albii 1484 . . . . 5  |-  ( A. y ( y  e.  x  <->  y  e.  ( A  i^i  B ) )  <->  A. y ( y  e.  x  <->  ( y  e.  A  /\  y  e.  B ) ) )
106, 9bitri 184 . . . 4  |-  ( x  =  ( A  i^i  B )  <->  A. y ( y  e.  x  <->  ( y  e.  A  /\  y  e.  B ) ) )
1110exbii 1619 . . 3  |-  ( E. x  x  =  ( A  i^i  B )  <->  E. x A. y ( y  e.  x  <->  ( y  e.  A  /\  y  e.  B ) ) )
125, 11mpbir 146 . 2  |-  E. x  x  =  ( A  i^i  B )
1312issetri 2772 1  |-  ( A  i^i  B )  e. 
_V
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   A.wal 1362    = wceq 1364   E.wex 1506    e. wcel 2167   _Vcvv 2763    i^i cin 3156  BOUNDED wbdc 15486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-bdsep 15530
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163  df-bdc 15487
This theorem is referenced by:  bdinex2  15546  bdinex1g  15547  bdpeano5  15589
  Copyright terms: Public domain W3C validator