Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdinex1 Unicode version

Theorem bdinex1 16172
Description: Bounded version of inex1 4197. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bdinex1.bd  |- BOUNDED  B
bdinex1.1  |-  A  e. 
_V
Assertion
Ref Expression
bdinex1  |-  ( A  i^i  B )  e. 
_V

Proof of Theorem bdinex1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bdinex1.1 . . . 4  |-  A  e. 
_V
2 bdinex1.bd . . . . . 6  |- BOUNDED  B
32bdeli 16119 . . . . 5  |- BOUNDED  y  e.  B
43bdzfauscl 16163 . . . 4  |-  ( A  e.  _V  ->  E. x A. y ( y  e.  x  <->  ( y  e.  A  /\  y  e.  B ) ) )
51, 4ax-mp 5 . . 3  |-  E. x A. y ( y  e.  x  <->  ( y  e.  A  /\  y  e.  B ) )
6 dfcleq 2203 . . . . 5  |-  ( x  =  ( A  i^i  B )  <->  A. y ( y  e.  x  <->  y  e.  ( A  i^i  B ) ) )
7 elin 3367 . . . . . . 7  |-  ( y  e.  ( A  i^i  B )  <->  ( y  e.  A  /\  y  e.  B ) )
87bibi2i 227 . . . . . 6  |-  ( ( y  e.  x  <->  y  e.  ( A  i^i  B ) )  <->  ( y  e.  x  <->  ( y  e.  A  /\  y  e.  B ) ) )
98albii 1496 . . . . 5  |-  ( A. y ( y  e.  x  <->  y  e.  ( A  i^i  B ) )  <->  A. y ( y  e.  x  <->  ( y  e.  A  /\  y  e.  B ) ) )
106, 9bitri 184 . . . 4  |-  ( x  =  ( A  i^i  B )  <->  A. y ( y  e.  x  <->  ( y  e.  A  /\  y  e.  B ) ) )
1110exbii 1631 . . 3  |-  ( E. x  x  =  ( A  i^i  B )  <->  E. x A. y ( y  e.  x  <->  ( y  e.  A  /\  y  e.  B ) ) )
125, 11mpbir 146 . 2  |-  E. x  x  =  ( A  i^i  B )
1312issetri 2789 1  |-  ( A  i^i  B )  e. 
_V
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   A.wal 1373    = wceq 1375   E.wex 1518    e. wcel 2180   _Vcvv 2779    i^i cin 3176  BOUNDED wbdc 16113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191  ax-bdsep 16157
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-v 2781  df-in 3183  df-bdc 16114
This theorem is referenced by:  bdinex2  16173  bdinex1g  16174  bdpeano5  16216
  Copyright terms: Public domain W3C validator