Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdinex1 Unicode version

Theorem bdinex1 13934
Description: Bounded version of inex1 4123. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bdinex1.bd  |- BOUNDED  B
bdinex1.1  |-  A  e. 
_V
Assertion
Ref Expression
bdinex1  |-  ( A  i^i  B )  e. 
_V

Proof of Theorem bdinex1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bdinex1.1 . . . 4  |-  A  e. 
_V
2 bdinex1.bd . . . . . 6  |- BOUNDED  B
32bdeli 13881 . . . . 5  |- BOUNDED  y  e.  B
43bdzfauscl 13925 . . . 4  |-  ( A  e.  _V  ->  E. x A. y ( y  e.  x  <->  ( y  e.  A  /\  y  e.  B ) ) )
51, 4ax-mp 5 . . 3  |-  E. x A. y ( y  e.  x  <->  ( y  e.  A  /\  y  e.  B ) )
6 dfcleq 2164 . . . . 5  |-  ( x  =  ( A  i^i  B )  <->  A. y ( y  e.  x  <->  y  e.  ( A  i^i  B ) ) )
7 elin 3310 . . . . . . 7  |-  ( y  e.  ( A  i^i  B )  <->  ( y  e.  A  /\  y  e.  B ) )
87bibi2i 226 . . . . . 6  |-  ( ( y  e.  x  <->  y  e.  ( A  i^i  B ) )  <->  ( y  e.  x  <->  ( y  e.  A  /\  y  e.  B ) ) )
98albii 1463 . . . . 5  |-  ( A. y ( y  e.  x  <->  y  e.  ( A  i^i  B ) )  <->  A. y ( y  e.  x  <->  ( y  e.  A  /\  y  e.  B ) ) )
106, 9bitri 183 . . . 4  |-  ( x  =  ( A  i^i  B )  <->  A. y ( y  e.  x  <->  ( y  e.  A  /\  y  e.  B ) ) )
1110exbii 1598 . . 3  |-  ( E. x  x  =  ( A  i^i  B )  <->  E. x A. y ( y  e.  x  <->  ( y  e.  A  /\  y  e.  B ) ) )
125, 11mpbir 145 . 2  |-  E. x  x  =  ( A  i^i  B )
1312issetri 2739 1  |-  ( A  i^i  B )  e. 
_V
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104   A.wal 1346    = wceq 1348   E.wex 1485    e. wcel 2141   _Vcvv 2730    i^i cin 3120  BOUNDED wbdc 13875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-bdsep 13919
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-in 3127  df-bdc 13876
This theorem is referenced by:  bdinex2  13935  bdinex1g  13936  bdpeano5  13978
  Copyright terms: Public domain W3C validator