ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vnex Unicode version

Theorem vnex 4113
Description: The universal class does not exist as a set. (Contributed by NM, 4-Jul-2005.)
Assertion
Ref Expression
vnex  |-  -.  E. x  x  =  _V

Proof of Theorem vnex
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 nalset 4112 . 2  |-  -.  E. x A. y  y  e.  x
2 vex 2729 . . . . . 6  |-  y  e. 
_V
32tbt 246 . . . . 5  |-  ( y  e.  x  <->  ( y  e.  x  <->  y  e.  _V ) )
43albii 1458 . . . 4  |-  ( A. y  y  e.  x  <->  A. y ( y  e.  x  <->  y  e.  _V ) )
5 dfcleq 2159 . . . 4  |-  ( x  =  _V  <->  A. y
( y  e.  x  <->  y  e.  _V ) )
64, 5bitr4i 186 . . 3  |-  ( A. y  y  e.  x  <->  x  =  _V )
76exbii 1593 . 2  |-  ( E. x A. y  y  e.  x  <->  E. x  x  =  _V )
81, 7mtbi 660 1  |-  -.  E. x  x  =  _V
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 104   A.wal 1341    = wceq 1343   E.wex 1480    e. wcel 2136   _Vcvv 2726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-v 2728
This theorem is referenced by:  vprc  4114
  Copyright terms: Public domain W3C validator