ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vnex Unicode version

Theorem vnex 4175
Description: The universal class does not exist as a set. (Contributed by NM, 4-Jul-2005.)
Assertion
Ref Expression
vnex  |-  -.  E. x  x  =  _V

Proof of Theorem vnex
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 nalset 4174 . 2  |-  -.  E. x A. y  y  e.  x
2 vex 2775 . . . . . 6  |-  y  e. 
_V
32tbt 247 . . . . 5  |-  ( y  e.  x  <->  ( y  e.  x  <->  y  e.  _V ) )
43albii 1493 . . . 4  |-  ( A. y  y  e.  x  <->  A. y ( y  e.  x  <->  y  e.  _V ) )
5 dfcleq 2199 . . . 4  |-  ( x  =  _V  <->  A. y
( y  e.  x  <->  y  e.  _V ) )
64, 5bitr4i 187 . . 3  |-  ( A. y  y  e.  x  <->  x  =  _V )
76exbii 1628 . 2  |-  ( E. x A. y  y  e.  x  <->  E. x  x  =  _V )
81, 7mtbi 672 1  |-  -.  E. x  x  =  _V
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 105   A.wal 1371    = wceq 1373   E.wex 1515    e. wcel 2176   _Vcvv 2772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1470  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-v 2774
This theorem is referenced by:  vprc  4176
  Copyright terms: Public domain W3C validator