| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > vnex | Unicode version | ||
| Description: The universal class does not exist as a set. (Contributed by NM, 4-Jul-2005.) |
| Ref | Expression |
|---|---|
| vnex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nalset 4190 |
. 2
| |
| 2 | vex 2779 |
. . . . . 6
| |
| 3 | 2 | tbt 247 |
. . . . 5
|
| 4 | 3 | albii 1494 |
. . . 4
|
| 5 | dfcleq 2201 |
. . . 4
| |
| 6 | 4, 5 | bitr4i 187 |
. . 3
|
| 7 | 6 | exbii 1629 |
. 2
|
| 8 | 1, 7 | mtbi 672 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-v 2778 |
| This theorem is referenced by: vprc 4192 |
| Copyright terms: Public domain | W3C validator |