Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > vnex | Unicode version |
Description: The universal class does not exist as a set. (Contributed by NM, 4-Jul-2005.) |
Ref | Expression |
---|---|
vnex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nalset 4112 | . 2 | |
2 | vex 2729 | . . . . . 6 | |
3 | 2 | tbt 246 | . . . . 5 |
4 | 3 | albii 1458 | . . . 4 |
5 | dfcleq 2159 | . . . 4 | |
6 | 4, 5 | bitr4i 186 | . . 3 |
7 | 6 | exbii 1593 | . 2 |
8 | 1, 7 | mtbi 660 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wb 104 wal 1341 wceq 1343 wex 1480 wcel 2136 cvv 2726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-v 2728 |
This theorem is referenced by: vprc 4114 |
Copyright terms: Public domain | W3C validator |