Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-vprc Unicode version

Theorem bj-vprc 16259
Description: vprc 4216 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-vprc  |-  -.  _V  e.  _V

Proof of Theorem bj-vprc
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bj-nalset 16258 . . 3  |-  -.  E. x A. y  y  e.  x
2 vex 2802 . . . . . . 7  |-  y  e. 
_V
32tbt 247 . . . . . 6  |-  ( y  e.  x  <->  ( y  e.  x  <->  y  e.  _V ) )
43albii 1516 . . . . 5  |-  ( A. y  y  e.  x  <->  A. y ( y  e.  x  <->  y  e.  _V ) )
5 dfcleq 2223 . . . . 5  |-  ( x  =  _V  <->  A. y
( y  e.  x  <->  y  e.  _V ) )
64, 5bitr4i 187 . . . 4  |-  ( A. y  y  e.  x  <->  x  =  _V )
76exbii 1651 . . 3  |-  ( E. x A. y  y  e.  x  <->  E. x  x  =  _V )
81, 7mtbi 674 . 2  |-  -.  E. x  x  =  _V
9 isset 2806 . 2  |-  ( _V  e.  _V  <->  E. x  x  =  _V )
108, 9mtbir 675 1  |-  -.  _V  e.  _V
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 105   A.wal 1393    = wceq 1395   E.wex 1538    e. wcel 2200   _Vcvv 2799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-13 2202  ax-14 2203  ax-ext 2211  ax-bdn 16180  ax-bdel 16184  ax-bdsep 16247
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-v 2801
This theorem is referenced by:  bj-nvel  16260  bj-vnex  16261  bj-intexr  16271  bj-intnexr  16272
  Copyright terms: Public domain W3C validator