ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brm Unicode version

Theorem brm 4032
Description: If two sets are in a binary relation, the relation is inhabited. (Contributed by Jim Kingdon, 31-Dec-2023.)
Assertion
Ref Expression
brm  |-  ( A R B  ->  E. x  x  e.  R )
Distinct variable groups:    x, A    x, B    x, R

Proof of Theorem brm
StepHypRef Expression
1 df-br 3983 . 2  |-  ( A R B  <->  <. A ,  B >.  e.  R )
2 elex2 2742 . 2  |-  ( <. A ,  B >.  e.  R  ->  E. x  x  e.  R )
31, 2sylbi 120 1  |-  ( A R B  ->  E. x  x  e.  R )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1480    e. wcel 2136   <.cop 3579   class class class wbr 3982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-v 2728  df-br 3983
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator