ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brm GIF version

Theorem brm 4079
Description: If two sets are in a binary relation, the relation is inhabited. (Contributed by Jim Kingdon, 31-Dec-2023.)
Assertion
Ref Expression
brm (𝐴𝑅𝐵 → ∃𝑥 𝑥𝑅)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅

Proof of Theorem brm
StepHypRef Expression
1 df-br 4030 . 2 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
2 elex2 2776 . 2 (⟨𝐴, 𝐵⟩ ∈ 𝑅 → ∃𝑥 𝑥𝑅)
31, 2sylbi 121 1 (𝐴𝑅𝐵 → ∃𝑥 𝑥𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4  wex 1503  wcel 2164  cop 3621   class class class wbr 4029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-v 2762  df-br 4030
This theorem is referenced by:  elfvm  5587
  Copyright terms: Public domain W3C validator