| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > brm | GIF version | ||
| Description: If two sets are in a binary relation, the relation is inhabited. (Contributed by Jim Kingdon, 31-Dec-2023.) |
| Ref | Expression |
|---|---|
| brm | ⊢ (𝐴𝑅𝐵 → ∃𝑥 𝑥 ∈ 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 4060 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
| 2 | elex2 2793 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ 𝑅 → ∃𝑥 𝑥 ∈ 𝑅) | |
| 3 | 1, 2 | sylbi 121 | 1 ⊢ (𝐴𝑅𝐵 → ∃𝑥 𝑥 ∈ 𝑅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∃wex 1516 ∈ wcel 2178 〈cop 3646 class class class wbr 4059 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-v 2778 df-br 4060 |
| This theorem is referenced by: elfvm 5632 |
| Copyright terms: Public domain | W3C validator |