ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brm GIF version

Theorem brm 4110
Description: If two sets are in a binary relation, the relation is inhabited. (Contributed by Jim Kingdon, 31-Dec-2023.)
Assertion
Ref Expression
brm (𝐴𝑅𝐵 → ∃𝑥 𝑥𝑅)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅

Proof of Theorem brm
StepHypRef Expression
1 df-br 4060 . 2 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
2 elex2 2793 . 2 (⟨𝐴, 𝐵⟩ ∈ 𝑅 → ∃𝑥 𝑥𝑅)
31, 2sylbi 121 1 (𝐴𝑅𝐵 → ∃𝑥 𝑥𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4  wex 1516  wcel 2178  cop 3646   class class class wbr 4059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-v 2778  df-br 4060
This theorem is referenced by:  elfvm  5632
  Copyright terms: Public domain W3C validator