Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > brm | GIF version |
Description: If two sets are in a binary relation, the relation is inhabited. (Contributed by Jim Kingdon, 31-Dec-2023.) |
Ref | Expression |
---|---|
brm | ⊢ (𝐴𝑅𝐵 → ∃𝑥 𝑥 ∈ 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 3990 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
2 | elex2 2746 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ 𝑅 → ∃𝑥 𝑥 ∈ 𝑅) | |
3 | 1, 2 | sylbi 120 | 1 ⊢ (𝐴𝑅𝐵 → ∃𝑥 𝑥 ∈ 𝑅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1485 ∈ wcel 2141 〈cop 3586 class class class wbr 3989 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-v 2732 df-br 3990 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |