ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brm GIF version

Theorem brm 4093
Description: If two sets are in a binary relation, the relation is inhabited. (Contributed by Jim Kingdon, 31-Dec-2023.)
Assertion
Ref Expression
brm (𝐴𝑅𝐵 → ∃𝑥 𝑥𝑅)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅

Proof of Theorem brm
StepHypRef Expression
1 df-br 4044 . 2 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
2 elex2 2787 . 2 (⟨𝐴, 𝐵⟩ ∈ 𝑅 → ∃𝑥 𝑥𝑅)
31, 2sylbi 121 1 (𝐴𝑅𝐵 → ∃𝑥 𝑥𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4  wex 1514  wcel 2175  cop 3635   class class class wbr 4043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-v 2773  df-br 4044
This theorem is referenced by:  elfvm  5608
  Copyright terms: Public domain W3C validator