ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brm GIF version

Theorem brm 4039
Description: If two sets are in a binary relation, the relation is inhabited. (Contributed by Jim Kingdon, 31-Dec-2023.)
Assertion
Ref Expression
brm (𝐴𝑅𝐵 → ∃𝑥 𝑥𝑅)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅

Proof of Theorem brm
StepHypRef Expression
1 df-br 3990 . 2 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
2 elex2 2746 . 2 (⟨𝐴, 𝐵⟩ ∈ 𝑅 → ∃𝑥 𝑥𝑅)
31, 2sylbi 120 1 (𝐴𝑅𝐵 → ∃𝑥 𝑥𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4  wex 1485  wcel 2141  cop 3586   class class class wbr 3989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-v 2732  df-br 3990
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator