![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > brm | GIF version |
Description: If two sets are in a binary relation, the relation is inhabited. (Contributed by Jim Kingdon, 31-Dec-2023.) |
Ref | Expression |
---|---|
brm | ⊢ (𝐴𝑅𝐵 → ∃𝑥 𝑥 ∈ 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 4030 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
2 | elex2 2776 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ 𝑅 → ∃𝑥 𝑥 ∈ 𝑅) | |
3 | 1, 2 | sylbi 121 | 1 ⊢ (𝐴𝑅𝐵 → ∃𝑥 𝑥 ∈ 𝑅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1503 ∈ wcel 2164 〈cop 3621 class class class wbr 4029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-v 2762 df-br 4030 |
This theorem is referenced by: elfvm 5587 |
Copyright terms: Public domain | W3C validator |