ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brun Unicode version

Theorem brun 3883
Description: The union of two binary relations. (Contributed by NM, 21-Dec-2008.)
Assertion
Ref Expression
brun  |-  ( A ( R  u.  S
) B  <->  ( A R B  \/  A S B ) )

Proof of Theorem brun
StepHypRef Expression
1 elun 3139 . 2  |-  ( <. A ,  B >.  e.  ( R  u.  S
)  <->  ( <. A ,  B >.  e.  R  \/  <. A ,  B >.  e.  S ) )
2 df-br 3838 . 2  |-  ( A ( R  u.  S
) B  <->  <. A ,  B >.  e.  ( R  u.  S ) )
3 df-br 3838 . . 3  |-  ( A R B  <->  <. A ,  B >.  e.  R )
4 df-br 3838 . . 3  |-  ( A S B  <->  <. A ,  B >.  e.  S )
53, 4orbi12i 716 . 2  |-  ( ( A R B  \/  A S B )  <->  ( <. A ,  B >.  e.  R  \/  <. A ,  B >.  e.  S ) )
61, 2, 53bitr4i 210 1  |-  ( A ( R  u.  S
) B  <->  ( A R B  \/  A S B ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 103    \/ wo 664    e. wcel 1438    u. cun 2995   <.cop 3444   class class class wbr 3837
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-v 2621  df-un 3001  df-br 3838
This theorem is referenced by:  dmun  4631  qfto  4808  poleloe  4818  cnvun  4824  coundi  4919  coundir  4920  brdifun  6299  ltxrlt  7531  ltxr  9215
  Copyright terms: Public domain W3C validator