ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brun Unicode version

Theorem brun 4080
Description: The union of two binary relations. (Contributed by NM, 21-Dec-2008.)
Assertion
Ref Expression
brun  |-  ( A ( R  u.  S
) B  <->  ( A R B  \/  A S B ) )

Proof of Theorem brun
StepHypRef Expression
1 elun 3300 . 2  |-  ( <. A ,  B >.  e.  ( R  u.  S
)  <->  ( <. A ,  B >.  e.  R  \/  <. A ,  B >.  e.  S ) )
2 df-br 4030 . 2  |-  ( A ( R  u.  S
) B  <->  <. A ,  B >.  e.  ( R  u.  S ) )
3 df-br 4030 . . 3  |-  ( A R B  <->  <. A ,  B >.  e.  R )
4 df-br 4030 . . 3  |-  ( A S B  <->  <. A ,  B >.  e.  S )
53, 4orbi12i 765 . 2  |-  ( ( A R B  \/  A S B )  <->  ( <. A ,  B >.  e.  R  \/  <. A ,  B >.  e.  S ) )
61, 2, 53bitr4i 212 1  |-  ( A ( R  u.  S
) B  <->  ( A R B  \/  A S B ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    \/ wo 709    e. wcel 2164    u. cun 3151   <.cop 3621   class class class wbr 4029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-br 4030
This theorem is referenced by:  dmun  4869  qfto  5055  poleloe  5065  cnvun  5071  coundi  5167  coundir  5168  brdifun  6614  ltxrlt  8085  ltxr  9841
  Copyright terms: Public domain W3C validator