ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brne0 Unicode version

Theorem brne0 4082
Description: If two sets are in a binary relation, the relation cannot be empty. In fact, the relation is also inhabited, as seen at brm 4083. (Contributed by Alexander van der Vekens, 7-Jul-2018.)
Assertion
Ref Expression
brne0  |-  ( A R B  ->  R  =/=  (/) )

Proof of Theorem brne0
StepHypRef Expression
1 df-br 4034 . 2  |-  ( A R B  <->  <. A ,  B >.  e.  R )
2 ne0i 3457 . 2  |-  ( <. A ,  B >.  e.  R  ->  R  =/=  (/) )
31, 2sylbi 121 1  |-  ( A R B  ->  R  =/=  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2167    =/= wne 2367   (/)c0 3450   <.cop 3625   class class class wbr 4033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-v 2765  df-dif 3159  df-nul 3451  df-br 4034
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator