ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brne0 Unicode version

Theorem brne0 4038
Description: If two sets are in a binary relation, the relation cannot be empty. In fact, the relation is also inhabited, as seen at brm 4039. (Contributed by Alexander van der Vekens, 7-Jul-2018.)
Assertion
Ref Expression
brne0  |-  ( A R B  ->  R  =/=  (/) )

Proof of Theorem brne0
StepHypRef Expression
1 df-br 3990 . 2  |-  ( A R B  <->  <. A ,  B >.  e.  R )
2 ne0i 3421 . 2  |-  ( <. A ,  B >.  e.  R  ->  R  =/=  (/) )
31, 2sylbi 120 1  |-  ( A R B  ->  R  =/=  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2141    =/= wne 2340   (/)c0 3414   <.cop 3586   class class class wbr 3989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-v 2732  df-dif 3123  df-nul 3415  df-br 3990
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator