ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvdisjv Unicode version

Theorem cbvdisjv 3949
Description: Change bound variables in a disjoint collection. (Contributed by Mario Carneiro, 11-Dec-2016.)
Hypothesis
Ref Expression
cbvdisjv.1  |-  ( x  =  y  ->  B  =  C )
Assertion
Ref Expression
cbvdisjv  |-  (Disj  x  e.  A  B  <-> Disj  y  e.  A  C )
Distinct variable groups:    x, y, A   
y, B    x, C
Allowed substitution hints:    B( x)    C( y)

Proof of Theorem cbvdisjv
StepHypRef Expression
1 nfcv 2296 . 2  |-  F/_ y B
2 nfcv 2296 . 2  |-  F/_ x C
3 cbvdisjv.1 . 2  |-  ( x  =  y  ->  B  =  C )
41, 2, 3cbvdisj 3948 1  |-  (Disj  x  e.  A  B  <-> Disj  y  e.  A  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1332  Disj wdisj 3938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-ext 2136
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-cleq 2147  df-clel 2150  df-nfc 2285  df-rex 2438  df-reu 2439  df-rmo 2440  df-disj 3939
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator