ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvdisjv Unicode version

Theorem cbvdisjv 4032
Description: Change bound variables in a disjoint collection. (Contributed by Mario Carneiro, 11-Dec-2016.)
Hypothesis
Ref Expression
cbvdisjv.1  |-  ( x  =  y  ->  B  =  C )
Assertion
Ref Expression
cbvdisjv  |-  (Disj  x  e.  A  B  <-> Disj  y  e.  A  C )
Distinct variable groups:    x, y, A   
y, B    x, C
Allowed substitution hints:    B( x)    C( y)

Proof of Theorem cbvdisjv
StepHypRef Expression
1 nfcv 2348 . 2  |-  F/_ y B
2 nfcv 2348 . 2  |-  F/_ x C
3 cbvdisjv.1 . 2  |-  ( x  =  y  ->  B  =  C )
41, 2, 3cbvdisj 4031 1  |-  (Disj  x  e.  A  B  <-> Disj  y  e.  A  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373  Disj wdisj 4021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490  df-reu 2491  df-rmo 2492  df-disj 4022
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator