ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbviotav Unicode version

Theorem cbviotav 5225
Description: Change bound variables in a description binder. (Contributed by Andrew Salmon, 1-Aug-2011.)
Hypothesis
Ref Expression
cbviotav.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbviotav  |-  ( iota
x ph )  =  ( iota y ps )
Distinct variable groups:    ph, y    ps, x
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem cbviotav
StepHypRef Expression
1 cbviotav.1 . 2  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
2 nfv 1542 . 2  |-  F/ y
ph
3 nfv 1542 . 2  |-  F/ x ps
41, 2, 3cbviota 5224 1  |-  ( iota
x ph )  =  ( iota y ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364   iotacio 5217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-sn 3628  df-uni 3840  df-iota 5219
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator