Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cbviotav | GIF version |
Description: Change bound variables in a description binder. (Contributed by Andrew Salmon, 1-Aug-2011.) |
Ref | Expression |
---|---|
cbviotav.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbviotav | ⊢ (℩𝑥𝜑) = (℩𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbviotav.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | nfv 1521 | . 2 ⊢ Ⅎ𝑦𝜑 | |
3 | nfv 1521 | . 2 ⊢ Ⅎ𝑥𝜓 | |
4 | 1, 2, 3 | cbviota 5165 | 1 ⊢ (℩𝑥𝜑) = (℩𝑦𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1348 ℩cio 5158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-sn 3589 df-uni 3797 df-iota 5160 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |