ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbviotav GIF version

Theorem cbviotav 5238
Description: Change bound variables in a description binder. (Contributed by Andrew Salmon, 1-Aug-2011.)
Hypothesis
Ref Expression
cbviotav.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbviotav (℩𝑥𝜑) = (℩𝑦𝜓)
Distinct variable groups:   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem cbviotav
StepHypRef Expression
1 cbviotav.1 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
2 nfv 1551 . 2 𝑦𝜑
3 nfv 1551 . 2 𝑥𝜓
41, 2, 3cbviota 5237 1 (℩𝑥𝜑) = (℩𝑦𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1373  cio 5230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490  df-sn 3639  df-uni 3851  df-iota 5232
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator