| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > cbviota | Unicode version | ||
| Description: Change bound variables in a description binder. (Contributed by Andrew Salmon, 1-Aug-2011.) | 
| Ref | Expression | 
|---|---|
| cbviota.1 | 
 | 
| cbviota.2 | 
 | 
| cbviota.3 | 
 | 
| Ref | Expression | 
|---|---|
| cbviota | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfv 1542 | 
. . . . . 6
 | |
| 2 | nfs1v 1958 | 
. . . . . . 7
 | |
| 3 | nfv 1542 | 
. . . . . . 7
 | |
| 4 | 2, 3 | nfbi 1603 | 
. . . . . 6
 | 
| 5 | sbequ12 1785 | 
. . . . . . 7
 | |
| 6 | equequ1 1726 | 
. . . . . . 7
 | |
| 7 | 5, 6 | bibi12d 235 | 
. . . . . 6
 | 
| 8 | 1, 4, 7 | cbval 1768 | 
. . . . 5
 | 
| 9 | cbviota.2 | 
. . . . . . . 8
 | |
| 10 | 9 | nfsb 1965 | 
. . . . . . 7
 | 
| 11 | nfv 1542 | 
. . . . . . 7
 | |
| 12 | 10, 11 | nfbi 1603 | 
. . . . . 6
 | 
| 13 | nfv 1542 | 
. . . . . 6
 | |
| 14 | sbequ 1854 | 
. . . . . . . 8
 | |
| 15 | cbviota.3 | 
. . . . . . . . 9
 | |
| 16 | cbviota.1 | 
. . . . . . . . 9
 | |
| 17 | 15, 16 | sbie 1805 | 
. . . . . . . 8
 | 
| 18 | 14, 17 | bitrdi 196 | 
. . . . . . 7
 | 
| 19 | equequ1 1726 | 
. . . . . . 7
 | |
| 20 | 18, 19 | bibi12d 235 | 
. . . . . 6
 | 
| 21 | 12, 13, 20 | cbval 1768 | 
. . . . 5
 | 
| 22 | 8, 21 | bitri 184 | 
. . . 4
 | 
| 23 | 22 | abbii 2312 | 
. . 3
 | 
| 24 | 23 | unieqi 3849 | 
. 2
 | 
| 25 | dfiota2 5220 | 
. 2
 | |
| 26 | dfiota2 5220 | 
. 2
 | |
| 27 | 24, 25, 26 | 3eqtr4i 2227 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-sn 3628 df-uni 3840 df-iota 5219 | 
| This theorem is referenced by: cbviotav 5225 cbvriota 5888 | 
| Copyright terms: Public domain | W3C validator |