ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbviota Unicode version

Theorem cbviota 5088
Description: Change bound variables in a description binder. (Contributed by Andrew Salmon, 1-Aug-2011.)
Hypotheses
Ref Expression
cbviota.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
cbviota.2  |-  F/ y
ph
cbviota.3  |-  F/ x ps
Assertion
Ref Expression
cbviota  |-  ( iota
x ph )  =  ( iota y ps )

Proof of Theorem cbviota
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1508 . . . . . 6  |-  F/ z ( ph  <->  x  =  w )
2 nfs1v 1910 . . . . . . 7  |-  F/ x [ z  /  x ] ph
3 nfv 1508 . . . . . . 7  |-  F/ x  z  =  w
42, 3nfbi 1568 . . . . . 6  |-  F/ x
( [ z  /  x ] ph  <->  z  =  w )
5 sbequ12 1744 . . . . . . 7  |-  ( x  =  z  ->  ( ph 
<->  [ z  /  x ] ph ) )
6 equequ1 1688 . . . . . . 7  |-  ( x  =  z  ->  (
x  =  w  <->  z  =  w ) )
75, 6bibi12d 234 . . . . . 6  |-  ( x  =  z  ->  (
( ph  <->  x  =  w
)  <->  ( [ z  /  x ] ph  <->  z  =  w ) ) )
81, 4, 7cbval 1727 . . . . 5  |-  ( A. x ( ph  <->  x  =  w )  <->  A. z
( [ z  /  x ] ph  <->  z  =  w ) )
9 cbviota.2 . . . . . . . 8  |-  F/ y
ph
109nfsb 1917 . . . . . . 7  |-  F/ y [ z  /  x ] ph
11 nfv 1508 . . . . . . 7  |-  F/ y  z  =  w
1210, 11nfbi 1568 . . . . . 6  |-  F/ y ( [ z  /  x ] ph  <->  z  =  w )
13 nfv 1508 . . . . . 6  |-  F/ z ( ps  <->  y  =  w )
14 sbequ 1812 . . . . . . . 8  |-  ( z  =  y  ->  ( [ z  /  x ] ph  <->  [ y  /  x ] ph ) )
15 cbviota.3 . . . . . . . . 9  |-  F/ x ps
16 cbviota.1 . . . . . . . . 9  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
1715, 16sbie 1764 . . . . . . . 8  |-  ( [ y  /  x ] ph 
<->  ps )
1814, 17syl6bb 195 . . . . . . 7  |-  ( z  =  y  ->  ( [ z  /  x ] ph  <->  ps ) )
19 equequ1 1688 . . . . . . 7  |-  ( z  =  y  ->  (
z  =  w  <->  y  =  w ) )
2018, 19bibi12d 234 . . . . . 6  |-  ( z  =  y  ->  (
( [ z  /  x ] ph  <->  z  =  w )  <->  ( ps  <->  y  =  w ) ) )
2112, 13, 20cbval 1727 . . . . 5  |-  ( A. z ( [ z  /  x ] ph  <->  z  =  w )  <->  A. y
( ps  <->  y  =  w ) )
228, 21bitri 183 . . . 4  |-  ( A. x ( ph  <->  x  =  w )  <->  A. y
( ps  <->  y  =  w ) )
2322abbii 2253 . . 3  |-  { w  |  A. x ( ph  <->  x  =  w ) }  =  { w  | 
A. y ( ps  <->  y  =  w ) }
2423unieqi 3741 . 2  |-  U. {
w  |  A. x
( ph  <->  x  =  w
) }  =  U. { w  |  A. y ( ps  <->  y  =  w ) }
25 dfiota2 5084 . 2  |-  ( iota
x ph )  =  U. { w  |  A. x ( ph  <->  x  =  w ) }
26 dfiota2 5084 . 2  |-  ( iota y ps )  = 
U. { w  | 
A. y ( ps  <->  y  =  w ) }
2724, 25, 263eqtr4i 2168 1  |-  ( iota
x ph )  =  ( iota y ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1329    = wceq 1331   F/wnf 1436   [wsb 1735   {cab 2123   U.cuni 3731   iotacio 5081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-rex 2420  df-sn 3528  df-uni 3732  df-iota 5083
This theorem is referenced by:  cbviotav  5089  cbvriota  5733
  Copyright terms: Public domain W3C validator