ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbviotavw Unicode version

Theorem cbviotavw 5284
Description: Change bound variables in a description binder. Version of cbviotav 5285 with a disjoint variable condition. (Contributed by Andrew Salmon, 1-Aug-2011.) (Revised by GG, 30-Sep-2024.)
Hypothesis
Ref Expression
cbviotavw.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbviotavw  |-  ( iota
x ph )  =  ( iota y ps )
Distinct variable groups:    ph, y    ps, x    x, y
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem cbviotavw
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 cbviotavw.1 . . . . . 6  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
21cbvabv 2354 . . . . 5  |-  { x  |  ph }  =  {
y  |  ps }
32eqeq1i 2237 . . . 4  |-  ( { x  |  ph }  =  { z }  <->  { y  |  ps }  =  {
z } )
43abbii 2345 . . 3  |-  { z  |  { x  | 
ph }  =  {
z } }  =  { z  |  {
y  |  ps }  =  { z } }
54unieqi 3898 . 2  |-  U. {
z  |  { x  |  ph }  =  {
z } }  =  U. { z  |  {
y  |  ps }  =  { z } }
6 df-iota 5278 . 2  |-  ( iota
x ph )  =  U. { z  |  {
x  |  ph }  =  { z } }
7 df-iota 5278 . 2  |-  ( iota y ps )  = 
U. { z  |  { y  |  ps }  =  { z } }
85, 6, 73eqtr4i 2260 1  |-  ( iota
x ph )  =  ( iota y ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1395   {cab 2215   {csn 3666   U.cuni 3888   iotacio 5276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-uni 3889  df-iota 5278
This theorem is referenced by:  cbvriotavw  5971
  Copyright terms: Public domain W3C validator