ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvralv2 Unicode version

Theorem cbvralv2 3111
Description: Rule used to change the bound variable in a restricted universal quantifier with implicit substitution which also changes the quantifier domain. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
cbvralv2.1  |-  ( x  =  y  ->  ( ps 
<->  ch ) )
cbvralv2.2  |-  ( x  =  y  ->  A  =  B )
Assertion
Ref Expression
cbvralv2  |-  ( A. x  e.  A  ps  <->  A. y  e.  B  ch )
Distinct variable groups:    y, A    ps, y    x, B    ch, x
Allowed substitution hints:    ps( x)    ch( y)    A( x)    B( y)

Proof of Theorem cbvralv2
StepHypRef Expression
1 nfcv 2308 . 2  |-  F/_ y A
2 nfcv 2308 . 2  |-  F/_ x B
3 nfv 1516 . 2  |-  F/ y ps
4 nfv 1516 . 2  |-  F/ x ch
5 cbvralv2.2 . 2  |-  ( x  =  y  ->  A  =  B )
6 cbvralv2.1 . 2  |-  ( x  =  y  ->  ( ps 
<->  ch ) )
71, 2, 3, 4, 5, 6cbvralcsf 3107 1  |-  ( A. x  e.  A  ps  <->  A. y  e.  B  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1343   A.wral 2444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-sbc 2952  df-csb 3046
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator