Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cbvralcsf | Unicode version |
Description: A more general version of cbvralf 2674 that doesn't require and to be distinct from or . Changes bound variables using implicit substitution. (Contributed by Andrew Salmon, 13-Jul-2011.) |
Ref | Expression |
---|---|
cbvralcsf.1 | |
cbvralcsf.2 | |
cbvralcsf.3 | |
cbvralcsf.4 | |
cbvralcsf.5 | |
cbvralcsf.6 |
Ref | Expression |
---|---|
cbvralcsf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1508 | . . . 4 | |
2 | nfcsb1v 3064 | . . . . . 6 | |
3 | 2 | nfcri 2293 | . . . . 5 |
4 | nfsbc1v 2955 | . . . . 5 | |
5 | 3, 4 | nfim 1552 | . . . 4 |
6 | id 19 | . . . . . 6 | |
7 | csbeq1a 3040 | . . . . . 6 | |
8 | 6, 7 | eleq12d 2228 | . . . . 5 |
9 | sbceq1a 2946 | . . . . 5 | |
10 | 8, 9 | imbi12d 233 | . . . 4 |
11 | 1, 5, 10 | cbval 1734 | . . 3 |
12 | nfcv 2299 | . . . . . . 7 | |
13 | cbvralcsf.1 | . . . . . . 7 | |
14 | 12, 13 | nfcsb 3068 | . . . . . 6 |
15 | 14 | nfcri 2293 | . . . . 5 |
16 | cbvralcsf.3 | . . . . . 6 | |
17 | 12, 16 | nfsbc 2957 | . . . . 5 |
18 | 15, 17 | nfim 1552 | . . . 4 |
19 | nfv 1508 | . . . 4 | |
20 | id 19 | . . . . . 6 | |
21 | csbeq1 3034 | . . . . . . 7 | |
22 | df-csb 3032 | . . . . . . . 8 | |
23 | cbvralcsf.2 | . . . . . . . . . . . 12 | |
24 | 23 | nfcri 2293 | . . . . . . . . . . 11 |
25 | cbvralcsf.5 | . . . . . . . . . . . 12 | |
26 | 25 | eleq2d 2227 | . . . . . . . . . . 11 |
27 | 24, 26 | sbie 1771 | . . . . . . . . . 10 |
28 | sbsbc 2941 | . . . . . . . . . 10 | |
29 | 27, 28 | bitr3i 185 | . . . . . . . . 9 |
30 | 29 | abbi2i 2272 | . . . . . . . 8 |
31 | 22, 30 | eqtr4i 2181 | . . . . . . 7 |
32 | 21, 31 | eqtrdi 2206 | . . . . . 6 |
33 | 20, 32 | eleq12d 2228 | . . . . 5 |
34 | dfsbcq 2939 | . . . . . 6 | |
35 | sbsbc 2941 | . . . . . . 7 | |
36 | cbvralcsf.4 | . . . . . . . 8 | |
37 | cbvralcsf.6 | . . . . . . . 8 | |
38 | 36, 37 | sbie 1771 | . . . . . . 7 |
39 | 35, 38 | bitr3i 185 | . . . . . 6 |
40 | 34, 39 | bitrdi 195 | . . . . 5 |
41 | 33, 40 | imbi12d 233 | . . . 4 |
42 | 18, 19, 41 | cbval 1734 | . . 3 |
43 | 11, 42 | bitri 183 | . 2 |
44 | df-ral 2440 | . 2 | |
45 | df-ral 2440 | . 2 | |
46 | 43, 44, 45 | 3bitr4i 211 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wal 1333 wceq 1335 wnf 1440 wsb 1742 wcel 2128 cab 2143 wnfc 2286 wral 2435 wsbc 2937 csb 3031 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-sbc 2938 df-csb 3032 |
This theorem is referenced by: cbvralv2 3097 |
Copyright terms: Public domain | W3C validator |