Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cbvralv2 | GIF version |
Description: Rule used to change the bound variable in a restricted universal quantifier with implicit substitution which also changes the quantifier domain. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
cbvralv2.1 | ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) |
cbvralv2.2 | ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
cbvralv2 | ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2308 | . 2 ⊢ Ⅎ𝑦𝐴 | |
2 | nfcv 2308 | . 2 ⊢ Ⅎ𝑥𝐵 | |
3 | nfv 1516 | . 2 ⊢ Ⅎ𝑦𝜓 | |
4 | nfv 1516 | . 2 ⊢ Ⅎ𝑥𝜒 | |
5 | cbvralv2.2 | . 2 ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) | |
6 | cbvralv2.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) | |
7 | 1, 2, 3, 4, 5, 6 | cbvralcsf 3107 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1343 ∀wral 2444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-sbc 2952 df-csb 3046 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |