ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvralv2 GIF version

Theorem cbvralv2 3109
Description: Rule used to change the bound variable in a restricted universal quantifier with implicit substitution which also changes the quantifier domain. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
cbvralv2.1 (𝑥 = 𝑦 → (𝜓𝜒))
cbvralv2.2 (𝑥 = 𝑦𝐴 = 𝐵)
Assertion
Ref Expression
cbvralv2 (∀𝑥𝐴 𝜓 ↔ ∀𝑦𝐵 𝜒)
Distinct variable groups:   𝑦,𝐴   𝜓,𝑦   𝑥,𝐵   𝜒,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)   𝐴(𝑥)   𝐵(𝑦)

Proof of Theorem cbvralv2
StepHypRef Expression
1 nfcv 2306 . 2 𝑦𝐴
2 nfcv 2306 . 2 𝑥𝐵
3 nfv 1515 . 2 𝑦𝜓
4 nfv 1515 . 2 𝑥𝜒
5 cbvralv2.2 . 2 (𝑥 = 𝑦𝐴 = 𝐵)
6 cbvralv2.1 . 2 (𝑥 = 𝑦 → (𝜓𝜒))
71, 2, 3, 4, 5, 6cbvralcsf 3105 1 (∀𝑥𝐴 𝜓 ↔ ∀𝑦𝐵 𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1342  wral 2442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-ext 2146
This theorem depends on definitions:  df-bi 116  df-tru 1345  df-nf 1448  df-sb 1750  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-sbc 2950  df-csb 3044
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator