ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvriotav Unicode version

Theorem cbvriotav 5844
Description: Change bound variable in a restricted description binder. (Contributed by NM, 18-Mar-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypothesis
Ref Expression
cbvriotav.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvriotav  |-  ( iota_ x  e.  A  ph )  =  ( iota_ y  e.  A  ps )
Distinct variable groups:    x, A    y, A    ph, y    ps, x
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem cbvriotav
StepHypRef Expression
1 nfv 1528 . 2  |-  F/ y
ph
2 nfv 1528 . 2  |-  F/ x ps
3 cbvriotav.1 . 2  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
41, 2, 3cbvriota 5843 1  |-  ( iota_ x  e.  A  ph )  =  ( iota_ y  e.  A  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1353   iota_crio 5832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-sn 3600  df-uni 3812  df-iota 5180  df-riota 5833
This theorem is referenced by:  axcaucvg  7901
  Copyright terms: Public domain W3C validator