ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbriotag Unicode version

Theorem csbriotag 5886
Description: Interchange class substitution and restricted description binder. (Contributed by NM, 24-Feb-2013.)
Assertion
Ref Expression
csbriotag  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( iota_ y  e.  B  ph )  =  ( iota_ y  e.  B  [. A  /  x ]. ph ) )
Distinct variable groups:    y, A    x, B    x, y
Allowed substitution hints:    ph( x, y)    A( x)    B( y)    V( x, y)

Proof of Theorem csbriotag
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3083 . . 3  |-  ( z  =  A  ->  [_ z  /  x ]_ ( iota_ y  e.  B  ph )  =  [_ A  /  x ]_ ( iota_ y  e.  B  ph ) )
2 dfsbcq2 2988 . . . 4  |-  ( z  =  A  ->  ( [ z  /  x ] ph  <->  [. A  /  x ]. ph ) )
32riotabidv 5875 . . 3  |-  ( z  =  A  ->  ( iota_ y  e.  B  [
z  /  x ] ph )  =  ( iota_ y  e.  B  [. A  /  x ]. ph )
)
41, 3eqeq12d 2208 . 2  |-  ( z  =  A  ->  ( [_ z  /  x ]_ ( iota_ y  e.  B  ph )  =  ( iota_ y  e.  B  [ z  /  x ] ph ) 
<-> 
[_ A  /  x ]_ ( iota_ y  e.  B  ph )  =  ( iota_ y  e.  B  [. A  /  x ]. ph )
) )
5 vex 2763 . . 3  |-  z  e. 
_V
6 nfs1v 1955 . . . 4  |-  F/ x [ z  /  x ] ph
7 nfcv 2336 . . . 4  |-  F/_ x B
86, 7nfriota 5883 . . 3  |-  F/_ x
( iota_ y  e.  B  [ z  /  x ] ph )
9 sbequ12 1782 . . . 4  |-  ( x  =  z  ->  ( ph 
<->  [ z  /  x ] ph ) )
109riotabidv 5875 . . 3  |-  ( x  =  z  ->  ( iota_ y  e.  B  ph )  =  ( iota_ y  e.  B  [ z  /  x ] ph ) )
115, 8, 10csbief 3125 . 2  |-  [_ z  /  x ]_ ( iota_ y  e.  B  ph )  =  ( iota_ y  e.  B  [ z  /  x ] ph )
124, 11vtoclg 2820 1  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( iota_ y  e.  B  ph )  =  ( iota_ y  e.  B  [. A  /  x ]. ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   [wsb 1773    e. wcel 2164   [.wsbc 2985   [_csb 3080   iota_crio 5872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762  df-sbc 2986  df-csb 3081  df-sn 3624  df-uni 3836  df-iota 5215  df-riota 5873
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator