Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbriotag Unicode version

Theorem csbriotag 5636
 Description: Interchange class substitution and restricted description binder. (Contributed by NM, 24-Feb-2013.)
Assertion
Ref Expression
csbriotag
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   (,)   ()   ()   (,)

Proof of Theorem csbriotag
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 csbeq1 2939 . . 3
2 dfsbcq2 2846 . . . 4
32riotabidv 5626 . . 3
41, 3eqeq12d 2103 . 2
5 vex 2625 . . 3
6 nfs1v 1864 . . . 4
7 nfcv 2229 . . . 4
86, 7nfriota 5633 . . 3
9 sbequ12 1702 . . . 4
109riotabidv 5626 . . 3
115, 8, 10csbief 2975 . 2
124, 11vtoclg 2682 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1290   wcel 1439  wsb 1693  wsbc 2843  csb 2936  crio 5623 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071 This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-rex 2366  df-v 2624  df-sbc 2844  df-csb 2937  df-sn 3458  df-uni 3662  df-iota 4995  df-riota 5624 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator