Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > csbriotag | Unicode version |
Description: Interchange class substitution and restricted description binder. (Contributed by NM, 24-Feb-2013.) |
Ref | Expression |
---|---|
csbriotag |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1 3048 | . . 3 | |
2 | dfsbcq2 2954 | . . . 4 | |
3 | 2 | riotabidv 5800 | . . 3 |
4 | 1, 3 | eqeq12d 2180 | . 2 |
5 | vex 2729 | . . 3 | |
6 | nfs1v 1927 | . . . 4 | |
7 | nfcv 2308 | . . . 4 | |
8 | 6, 7 | nfriota 5807 | . . 3 |
9 | sbequ12 1759 | . . . 4 | |
10 | 9 | riotabidv 5800 | . . 3 |
11 | 5, 8, 10 | csbief 3089 | . 2 |
12 | 4, 11 | vtoclg 2786 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 wsb 1750 wcel 2136 wsbc 2951 csb 3045 crio 5797 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-sbc 2952 df-csb 3046 df-sn 3582 df-uni 3790 df-iota 5153 df-riota 5798 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |