Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > csbriotag | Unicode version |
Description: Interchange class substitution and restricted description binder. (Contributed by NM, 24-Feb-2013.) |
Ref | Expression |
---|---|
csbriotag |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1 3034 | . . 3 | |
2 | dfsbcq2 2940 | . . . 4 | |
3 | 2 | riotabidv 5782 | . . 3 |
4 | 1, 3 | eqeq12d 2172 | . 2 |
5 | vex 2715 | . . 3 | |
6 | nfs1v 1919 | . . . 4 | |
7 | nfcv 2299 | . . . 4 | |
8 | 6, 7 | nfriota 5789 | . . 3 |
9 | sbequ12 1751 | . . . 4 | |
10 | 9 | riotabidv 5782 | . . 3 |
11 | 5, 8, 10 | csbief 3075 | . 2 |
12 | 4, 11 | vtoclg 2772 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1335 wsb 1742 wcel 2128 wsbc 2937 csb 3031 crio 5779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-rex 2441 df-v 2714 df-sbc 2938 df-csb 3032 df-sn 3566 df-uni 3773 df-iota 5135 df-riota 5780 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |