HomeHome Intuitionistic Logic Explorer
Theorem List (p. 59 of 142)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 5801-5900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremisopolem 5801 Lemma for isopo 5802. (Contributed by Stefan O'Rear, 16-Nov-2014.)
 |-  ( H  Isom  R ,  S  ( A ,  B )  ->  ( S  Po  B  ->  R  Po  A ) )
 
Theoremisopo 5802 An isomorphism preserves partial ordering. (Contributed by Stefan O'Rear, 16-Nov-2014.)
 |-  ( H  Isom  R ,  S  ( A ,  B )  ->  ( R  Po  A 
 <->  S  Po  B ) )
 
Theoremisosolem 5803 Lemma for isoso 5804. (Contributed by Stefan O'Rear, 16-Nov-2014.)
 |-  ( H  Isom  R ,  S  ( A ,  B )  ->  ( S  Or  B  ->  R  Or  A ) )
 
Theoremisoso 5804 An isomorphism preserves strict ordering. (Contributed by Stefan O'Rear, 16-Nov-2014.)
 |-  ( H  Isom  R ,  S  ( A ,  B )  ->  ( R  Or  A 
 <->  S  Or  B ) )
 
Theoremf1oiso 5805* Any one-to-one onto function determines an isomorphism with an induced relation  S. Proposition 6.33 of [TakeutiZaring] p. 34. (Contributed by NM, 30-Apr-2004.)
 |-  ( ( H : A
 -1-1-onto-> B  /\  S  =  { <. z ,  w >.  | 
 E. x  e.  A  E. y  e.  A  ( ( z  =  ( H `  x )  /\  w  =  ( H `  y ) )  /\  x R y ) } )  ->  H  Isom  R ,  S  ( A ,  B ) )
 
Theoremf1oiso2 5806* Any one-to-one onto function determines an isomorphism with an induced relation  S. (Contributed by Mario Carneiro, 9-Mar-2013.)
 |-  S  =  { <. x ,  y >.  |  ( ( x  e.  B  /\  y  e.  B )  /\  ( `' H `  x ) R ( `' H `  y ) ) }   =>    |-  ( H : A -1-1-onto-> B  ->  H  Isom  R ,  S  ( A ,  B ) )
 
2.6.9  Cantor's Theorem
 
Theoremcanth 5807 No set  A is equinumerous to its power set (Cantor's theorem), i.e., no function can map  A onto its power set. Compare Theorem 6B(b) of [Enderton] p. 132. (Use nex 1493 if you want the form  -.  E. f
f : A -onto-> ~P A.) (Contributed by NM, 7-Aug-1994.) (Revised by Noah R Kingdon, 23-Jul-2024.)
 |-  A  e.  _V   =>    |-  -.  F : A -onto-> ~P A
 
2.6.10  Restricted iota (description binder)
 
Syntaxcrio 5808 Extend class notation with restricted description binder.
 class  ( iota_ x  e.  A  ph )
 
Definitiondf-riota 5809 Define restricted description binder. In case there is no unique  x such that  ( x  e.  A  /\  ph ) holds, it evaluates to the empty set. See also comments for df-iota 5160. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 2-Sep-2018.)
 |-  ( iota_ x  e.  A  ph )  =  ( iota
 x ( x  e.  A  /\  ph )
 )
 
Theoremriotaeqdv 5810* Formula-building deduction for iota. (Contributed by NM, 15-Sep-2011.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( iota_ x  e.  A  ps )  =  ( iota_ x  e.  B  ps ) )
 
Theoremriotabidv 5811* Formula-building deduction for restricted iota. (Contributed by NM, 15-Sep-2011.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  (
 iota_ x  e.  A  ps )  =  ( iota_ x  e.  A  ch ) )
 
Theoremriotaeqbidv 5812* Equality deduction for restricted universal quantifier. (Contributed by NM, 15-Sep-2011.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  (
 iota_ x  e.  A  ps )  =  ( iota_ x  e.  B  ch ) )
 
Theoremriotaexg 5813* Restricted iota is a set. (Contributed by Jim Kingdon, 15-Jun-2020.)
 |-  ( A  e.  V  ->  ( iota_ x  e.  A  ps )  e.  _V )
 
Theoremriotav 5814 An iota restricted to the universe is unrestricted. (Contributed by NM, 18-Sep-2011.)
 |-  ( iota_ x  e.  _V  ph )  =  ( iota
 x ph )
 
Theoremriotauni 5815 Restricted iota in terms of class union. (Contributed by NM, 11-Oct-2011.)
 |-  ( E! x  e.  A  ph  ->  ( iota_ x  e.  A  ph )  =  U. { x  e.  A  |  ph } )
 
Theoremnfriota1 5816* The abstraction variable in a restricted iota descriptor isn't free. (Contributed by NM, 12-Oct-2011.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |-  F/_ x ( iota_ x  e.  A  ph )
 
Theoremnfriotadxy 5817* Deduction version of nfriota 5818. (Contributed by Jim Kingdon, 12-Jan-2019.)
 |- 
 F/ y ph   &    |-  ( ph  ->  F/ x ps )   &    |-  ( ph  ->  F/_ x A )   =>    |-  ( ph  ->  F/_ x (
 iota_ y  e.  A  ps ) )
 
Theoremnfriota 5818* A variable not free in a wff remains so in a restricted iota descriptor. (Contributed by NM, 12-Oct-2011.)
 |- 
 F/ x ph   &    |-  F/_ x A   =>    |-  F/_ x ( iota_ y  e.  A  ph )
 
Theoremcbvriota 5819* Change bound variable in a restricted description binder. (Contributed by NM, 18-Mar-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |- 
 F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( iota_ x  e.  A  ph )  =  ( iota_ y  e.  A  ps )
 
Theoremcbvriotav 5820* Change bound variable in a restricted description binder. (Contributed by NM, 18-Mar-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  ( iota_ x  e.  A  ph )  =  ( iota_ y  e.  A  ps )
 
Theoremcsbriotag 5821* Interchange class substitution and restricted description binder. (Contributed by NM, 24-Feb-2013.)
 |-  ( A  e.  V  -> 
 [_ A  /  x ]_ ( iota_ y  e.  B  ph )  =  ( iota_ y  e.  B  [. A  /  x ]. ph )
 )
 
Theoremriotacl2 5822 Membership law for "the unique element in  A such that  ph."

(Contributed by NM, 21-Aug-2011.) (Revised by Mario Carneiro, 23-Dec-2016.)

 |-  ( E! x  e.  A  ph  ->  ( iota_ x  e.  A  ph )  e.  { x  e.  A  |  ph } )
 
Theoremriotacl 5823* Closure of restricted iota. (Contributed by NM, 21-Aug-2011.)
 |-  ( E! x  e.  A  ph  ->  ( iota_ x  e.  A  ph )  e.  A )
 
Theoremriotasbc 5824 Substitution law for descriptions. (Contributed by NM, 23-Aug-2011.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
 |-  ( E! x  e.  A  ph  ->  [. ( iota_ x  e.  A  ph )  /  x ]. ph )
 
Theoremriotabidva 5825* Equivalent wff's yield equal restricted class abstractions (deduction form). (rabbidva 2718 analog.) (Contributed by NM, 17-Jan-2012.)
 |-  ( ( ph  /\  x  e.  A )  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  (
 iota_ x  e.  A  ps )  =  ( iota_ x  e.  A  ch ) )
 
Theoremriotabiia 5826 Equivalent wff's yield equal restricted iotas (inference form). (rabbiia 2715 analog.) (Contributed by NM, 16-Jan-2012.)
 |-  ( x  e.  A  ->  ( ph  <->  ps ) )   =>    |-  ( iota_ x  e.  A  ph )  =  ( iota_ x  e.  A  ps )
 
Theoremriota1 5827* Property of restricted iota. Compare iota1 5174. (Contributed by Mario Carneiro, 15-Oct-2016.)
 |-  ( E! x  e.  A  ph  ->  ( ( x  e.  A  /\  ph )  <->  ( iota_ x  e.  A  ph )  =  x ) )
 
Theoremriota1a 5828 Property of iota. (Contributed by NM, 23-Aug-2011.)
 |-  ( ( x  e.  A  /\  E! x  e.  A  ph )  ->  ( ph  <->  ( iota x ( x  e.  A  /\  ph ) )  =  x ) )
 
Theoremriota2df 5829* A deduction version of riota2f 5830. (Contributed by NM, 17-Feb-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |- 
 F/ x ph   &    |-  ( ph  ->  F/_ x B )   &    |-  ( ph  ->  F/ x ch )   &    |-  ( ph  ->  B  e.  A )   &    |-  ( ( ph  /\  x  =  B ) 
 ->  ( ps  <->  ch ) )   =>    |-  ( ( ph  /\ 
 E! x  e.  A  ps )  ->  ( ch  <->  (
 iota_ x  e.  A  ps )  =  B ) )
 
Theoremriota2f 5830* This theorem shows a condition that allows us to represent a descriptor with a class expression  B. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |-  F/_ x B   &    |-  F/ x ps   &    |-  ( x  =  B  ->  (
 ph 
 <->  ps ) )   =>    |-  ( ( B  e.  A  /\  E! x  e.  A  ph )  ->  ( ps  <->  ( iota_ x  e.  A  ph )  =  B ) )
 
Theoremriota2 5831* This theorem shows a condition that allows us to represent a descriptor with a class expression  B. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 10-Dec-2016.)
 |-  ( x  =  B  ->  ( ph  <->  ps ) )   =>    |-  ( ( B  e.  A  /\  E! x  e.  A  ph )  ->  ( ps  <->  ( iota_ x  e.  A  ph )  =  B ) )
 
Theoremriotaprop 5832* Properties of a restricted definite description operator. Todo (df-riota 5809 update): can some uses of riota2f 5830 be shortened with this? (Contributed by NM, 23-Nov-2013.)
 |- 
 F/ x ps   &    |-  B  =  ( iota_ x  e.  A  ph )   &    |-  ( x  =  B  ->  ( ph  <->  ps ) )   =>    |-  ( E! x  e.  A  ph  ->  ( B  e.  A  /\  ps ) )
 
Theoremriota5f 5833* A method for computing restricted iota. (Contributed by NM, 16-Apr-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |-  ( ph  ->  F/_ x B )   &    |-  ( ph  ->  B  e.  A )   &    |-  (
 ( ph  /\  x  e.  A )  ->  ( ps 
 <->  x  =  B ) )   =>    |-  ( ph  ->  ( iota_ x  e.  A  ps )  =  B )
 
Theoremriota5 5834* A method for computing restricted iota. (Contributed by NM, 20-Oct-2011.) (Revised by Mario Carneiro, 6-Dec-2016.)
 |-  ( ph  ->  B  e.  A )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  ( ps  <->  x  =  B ) )   =>    |-  ( ph  ->  ( iota_ x  e.  A  ps )  =  B )
 
Theoremriotass2 5835* Restriction of a unique element to a smaller class. (Contributed by NM, 21-Aug-2011.) (Revised by NM, 22-Mar-2013.)
 |-  ( ( ( A 
 C_  B  /\  A. x  e.  A  ( ph  ->  ps ) )  /\  ( E. x  e.  A  ph 
 /\  E! x  e.  B  ps ) )  ->  ( iota_ x  e.  A  ph )  =  ( iota_ x  e.  B  ps ) )
 
Theoremriotass 5836* Restriction of a unique element to a smaller class. (Contributed by NM, 19-Oct-2005.) (Revised by Mario Carneiro, 24-Dec-2016.)
 |-  ( ( A  C_  B  /\  E. x  e.  A  ph  /\  E! x  e.  B  ph )  ->  ( iota_ x  e.  A  ph )  =  ( iota_ x  e.  B  ph )
 )
 
Theoremmoriotass 5837* Restriction of a unique element to a smaller class. (Contributed by NM, 19-Feb-2006.) (Revised by NM, 16-Jun-2017.)
 |-  ( ( A  C_  B  /\  E. x  e.  A  ph  /\  E* x  e.  B  ph )  ->  ( iota_ x  e.  A  ph )  =  ( iota_ x  e.  B  ph )
 )
 
Theoremsnriota 5838 A restricted class abstraction with a unique member can be expressed as a singleton. (Contributed by NM, 30-May-2006.)
 |-  ( E! x  e.  A  ph  ->  { x  e.  A  |  ph }  =  { ( iota_ x  e.  A  ph ) }
 )
 
Theoremeusvobj2 5839* Specify the same property in two ways when class  B ( y ) is single-valued. (Contributed by NM, 1-Nov-2010.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
 |-  B  e.  _V   =>    |-  ( E! x E. y  e.  A  x  =  B  ->  ( E. y  e.  A  x  =  B  <->  A. y  e.  A  x  =  B )
 )
 
Theoremeusvobj1 5840* Specify the same object in two ways when class  B ( y ) is single-valued. (Contributed by NM, 1-Nov-2010.) (Proof shortened by Mario Carneiro, 19-Nov-2016.)
 |-  B  e.  _V   =>    |-  ( E! x E. y  e.  A  x  =  B  ->  (
 iota x E. y  e.  A  x  =  B )  =  ( iota x
 A. y  e.  A  x  =  B )
 )
 
Theoremf1ofveu 5841* There is one domain element for each value of a one-to-one onto function. (Contributed by NM, 26-May-2006.)
 |-  ( ( F : A
 -1-1-onto-> B  /\  C  e.  B )  ->  E! x  e.  A  ( F `  x )  =  C )
 
Theoremf1ocnvfv3 5842* Value of the converse of a one-to-one onto function. (Contributed by NM, 26-May-2006.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
 |-  ( ( F : A
 -1-1-onto-> B  /\  C  e.  B )  ->  ( `' F `  C )  =  (
 iota_ x  e.  A  ( F `  x )  =  C ) )
 
Theoremriotaund 5843* Restricted iota equals the empty set when not meaningful. (Contributed by NM, 16-Jan-2012.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 13-Sep-2018.)
 |-  ( -.  E! x  e.  A  ph  ->  ( iota_ x  e.  A  ph )  =  (/) )
 
Theoremacexmidlema 5844* Lemma for acexmid 5852. (Contributed by Jim Kingdon, 6-Aug-2019.)
 |-  A  =  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) }   &    |-  B  =  { x  e.  { (/) ,  { (/)
 } }  |  ( x  =  { (/) }  \/  ph ) }   &    |-  C  =  { A ,  B }   =>    |-  ( { (/) }  e.  A  -> 
 ph )
 
Theoremacexmidlemb 5845* Lemma for acexmid 5852. (Contributed by Jim Kingdon, 6-Aug-2019.)
 |-  A  =  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) }   &    |-  B  =  { x  e.  { (/) ,  { (/)
 } }  |  ( x  =  { (/) }  \/  ph ) }   &    |-  C  =  { A ,  B }   =>    |-  ( (/) 
 e.  B  ->  ph )
 
Theoremacexmidlemph 5846* Lemma for acexmid 5852. (Contributed by Jim Kingdon, 6-Aug-2019.)
 |-  A  =  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) }   &    |-  B  =  { x  e.  { (/) ,  { (/)
 } }  |  ( x  =  { (/) }  \/  ph ) }   &    |-  C  =  { A ,  B }   =>    |-  ( ph  ->  A  =  B )
 
Theoremacexmidlemab 5847* Lemma for acexmid 5852. (Contributed by Jim Kingdon, 6-Aug-2019.)
 |-  A  =  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) }   &    |-  B  =  { x  e.  { (/) ,  { (/)
 } }  |  ( x  =  { (/) }  \/  ph ) }   &    |-  C  =  { A ,  B }   =>    |-  (
 ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_
 v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u )
 )  =  { (/) } )  ->  -.  ph )
 
Theoremacexmidlemcase 5848* Lemma for acexmid 5852. Here we divide the proof into cases (based on the disjunction implicit in an unordered pair, not the sort of case elimination which relies on excluded middle).

The cases are (1) the choice function evaluated at  A equals  { (/) }, (2) the choice function evaluated at  B equals  (/), and (3) the choice function evaluated at  A equals 
(/) and the choice function evaluated at  B equals  { (/) }.

Because of the way we represent the choice function  y, the choice function evaluated at  A is  ( iota_ v  e.  A E. u  e.  y ( A  e.  u  /\  v  e.  u ) ) and the choice function evaluated at  B is  ( iota_ v  e.  B E. u  e.  y ( B  e.  u  /\  v  e.  u ) ). Other than the difference in notation these work just as  ( y `  A ) and  ( y `  B ) would if  y were a function as defined by df-fun 5200.

Although it isn't exactly about the division into cases, it is also convenient for this lemma to also include the step that if the choice function evaluated at  A equals  { (/) }, then  { (/) }  e.  A and likewise for  B.

(Contributed by Jim Kingdon, 7-Aug-2019.)

 |-  A  =  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) }   &    |-  B  =  { x  e.  { (/) ,  { (/)
 } }  |  ( x  =  { (/) }  \/  ph ) }   &    |-  C  =  { A ,  B }   =>    |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u )  ->  ( { (/) }  e.  A  \/  (/)  e.  B  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_
 v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u )
 )  =  { (/) } )
 ) )
 
Theoremacexmidlem1 5849* Lemma for acexmid 5852. List the cases identified in acexmidlemcase 5848 and hook them up to the lemmas which handle each case. (Contributed by Jim Kingdon, 7-Aug-2019.)
 |-  A  =  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) }   &    |-  B  =  { x  e.  { (/) ,  { (/)
 } }  |  ( x  =  { (/) }  \/  ph ) }   &    |-  C  =  { A ,  B }   =>    |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u )  ->  ( ph  \/  -.  ph ) )
 
Theoremacexmidlem2 5850* Lemma for acexmid 5852. This builds on acexmidlem1 5849 by noting that every element of  C is inhabited.

(Note that  y is not quite a function in the df-fun 5200 sense because it uses ordered pairs as described in opthreg 4540 rather than df-op 3592).

The set  A is also found in onsucelsucexmidlem 4513.

(Contributed by Jim Kingdon, 5-Aug-2019.)

 |-  A  =  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) }   &    |-  B  =  { x  e.  { (/) ,  { (/)
 } }  |  ( x  =  { (/) }  \/  ph ) }   &    |-  C  =  { A ,  B }   =>    |-  ( A. z  e.  C  A. w  e.  z  E! v  e.  z  E. u  e.  y  (
 z  e.  u  /\  v  e.  u )  ->  ( ph  \/  -.  ph ) )
 
Theoremacexmidlemv 5851* Lemma for acexmid 5852.

This is acexmid 5852 with additional disjoint variable conditions, most notably between  ph and  x.

(Contributed by Jim Kingdon, 6-Aug-2019.)

 |- 
 E. y A. z  e.  x  A. w  e.  z  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u )   =>    |-  ( ph  \/  -.  ph )
 
Theoremacexmid 5852* The axiom of choice implies excluded middle. Theorem 1.3 in [Bauer] p. 483.

The statement of the axiom of choice given here is ac2 in the Metamath Proof Explorer (version of 3-Aug-2019). In particular, note that the choice function  y provides a value when  z is inhabited (as opposed to nonempty as in some statements of the axiom of choice).

Essentially the same proof can also be found at "The axiom of choice implies instances of EM", [Crosilla], p. "Set-theoretic principles incompatible with intuitionistic logic".

Often referred to as Diaconescu's theorem, or Diaconescu-Goodman-Myhill theorem, after Radu Diaconescu who discovered it in 1975 in the framework of topos theory and N. D. Goodman and John Myhill in 1978 in the framework of set theory (although it already appeared as an exercise in Errett Bishop's book Foundations of Constructive Analysis from 1967).

For this theorem stated using the df-ac 7183 and df-exmid 4181 syntaxes, see exmidac 7186. (Contributed by Jim Kingdon, 4-Aug-2019.)

 |- 
 E. y A. z  e.  x  A. w  e.  z  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u )   =>    |-  ( ph  \/  -.  ph )
 
2.6.11  Operations
 
Syntaxco 5853 Extend class notation to include the value of an operation  F (such as + ) for two arguments  A and  B. Note that the syntax is simply three class symbols in a row surrounded by parentheses. Since operation values are the only possible class expressions consisting of three class expressions in a row surrounded by parentheses, the syntax is unambiguous.
 class  ( A F B )
 
Syntaxcoprab 5854 Extend class notation to include class abstraction (class builder) of nested ordered pairs.
 class  { <. <. x ,  y >. ,  z >.  |  ph }
 
Syntaxcmpo 5855 Extend the definition of a class to include maps-to notation for defining an operation via a rule.
 class  ( x  e.  A ,  y  e.  B  |->  C )
 
Definitiondf-ov 5856 Define the value of an operation. Definition of operation value in [Enderton] p. 79. Note that the syntax is simply three class expressions in a row bracketed by parentheses. There are no restrictions of any kind on what those class expressions may be, although only certain kinds of class expressions - a binary operation  F and its arguments  A and  B- will be useful for proving meaningful theorems. For example, if class  F is the operation + and arguments  A and  B are 3 and 2 , the expression ( 3 + 2 ) can be proved to equal 5 . This definition is well-defined, although not very meaningful, when classes  A and/or  B are proper classes (i.e. are not sets); see ovprc1 5889 and ovprc2 5890. On the other hand, we often find uses for this definition when  F is a proper class.  F is normally equal to a class of nested ordered pairs of the form defined by df-oprab 5857. (Contributed by NM, 28-Feb-1995.)
 |-  ( A F B )  =  ( F ` 
 <. A ,  B >. )
 
Definitiondf-oprab 5857* Define the class abstraction (class builder) of a collection of nested ordered pairs (for use in defining operations). This is a special case of Definition 4.16 of [TakeutiZaring] p. 14. Normally  x,  y, and  z are distinct, although the definition doesn't strictly require it. See df-ov 5856 for the value of an operation. The brace notation is called "class abstraction" by Quine; it is also called a "class builder" in the literature. The value of the most common operation class builder is given by ovmpo 5988. (Contributed by NM, 12-Mar-1995.)
 |- 
 { <. <. x ,  y >. ,  z >.  |  ph }  =  { w  |  E. x E. y E. z ( w  = 
 <. <. x ,  y >. ,  z >.  /\  ph ) }
 
Definitiondf-mpo 5858* Define maps-to notation for defining an operation via a rule. Read as "the operation defined by the map from  x ,  y (in  A  X.  B) to  B ( x ,  y )". An extension of df-mpt 4052 for two arguments. (Contributed by NM, 17-Feb-2008.)
 |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <.
 <. x ,  y >. ,  z >.  |  (
 ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }
 
Theoremoveq 5859 Equality theorem for operation value. (Contributed by NM, 28-Feb-1995.)
 |-  ( F  =  G  ->  ( A F B )  =  ( A G B ) )
 
Theoremoveq1 5860 Equality theorem for operation value. (Contributed by NM, 28-Feb-1995.)
 |-  ( A  =  B  ->  ( A F C )  =  ( B F C ) )
 
Theoremoveq2 5861 Equality theorem for operation value. (Contributed by NM, 28-Feb-1995.)
 |-  ( A  =  B  ->  ( C F A )  =  ( C F B ) )
 
Theoremoveq12 5862 Equality theorem for operation value. (Contributed by NM, 16-Jul-1995.)
 |-  ( ( A  =  B  /\  C  =  D )  ->  ( A F C )  =  ( B F D ) )
 
Theoremoveq1i 5863 Equality inference for operation value. (Contributed by NM, 28-Feb-1995.)
 |-  A  =  B   =>    |-  ( A F C )  =  ( B F C )
 
Theoremoveq2i 5864 Equality inference for operation value. (Contributed by NM, 28-Feb-1995.)
 |-  A  =  B   =>    |-  ( C F A )  =  ( C F B )
 
Theoremoveq12i 5865 Equality inference for operation value. (Contributed by NM, 28-Feb-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
 |-  A  =  B   &    |-  C  =  D   =>    |-  ( A F C )  =  ( B F D )
 
Theoremoveqi 5866 Equality inference for operation value. (Contributed by NM, 24-Nov-2007.)
 |-  A  =  B   =>    |-  ( C A D )  =  ( C B D )
 
Theoremoveq123i 5867 Equality inference for operation value. (Contributed by FL, 11-Jul-2010.)
 |-  A  =  C   &    |-  B  =  D   &    |-  F  =  G   =>    |-  ( A F B )  =  ( C G D )
 
Theoremoveq1d 5868 Equality deduction for operation value. (Contributed by NM, 13-Mar-1995.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( A F C )  =  ( B F C ) )
 
Theoremoveq2d 5869 Equality deduction for operation value. (Contributed by NM, 13-Mar-1995.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( C F A )  =  ( C F B ) )
 
Theoremoveqd 5870 Equality deduction for operation value. (Contributed by NM, 9-Sep-2006.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( C A D )  =  ( C B D ) )
 
Theoremoveq12d 5871 Equality deduction for operation value. (Contributed by NM, 13-Mar-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  C  =  D )   =>    |-  ( ph  ->  ( A F C )  =  ( B F D ) )
 
Theoremoveqan12d 5872 Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ps  ->  C  =  D )   =>    |-  ( ( ph  /\ 
 ps )  ->  ( A F C )  =  ( B F D ) )
 
Theoremoveqan12rd 5873 Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ps  ->  C  =  D )   =>    |-  ( ( ps 
 /\  ph )  ->  ( A F C )  =  ( B F D ) )
 
Theoremoveq123d 5874 Equality deduction for operation value. (Contributed by FL, 22-Dec-2008.)
 |-  ( ph  ->  F  =  G )   &    |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  C  =  D )   =>    |-  ( ph  ->  ( A F C )  =  ( B G D ) )
 
Theoremfvoveq1d 5875 Equality deduction for nested function and operation value. (Contributed by AV, 23-Jul-2022.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( F `  ( A O C ) )  =  ( F `  ( B O C ) ) )
 
Theoremfvoveq1 5876 Equality theorem for nested function and operation value. Closed form of fvoveq1d 5875. (Contributed by AV, 23-Jul-2022.)
 |-  ( A  =  B  ->  ( F `  ( A O C ) )  =  ( F `  ( B O C ) ) )
 
Theoremovanraleqv 5877* Equality theorem for a conjunction with an operation values within a restricted universal quantification. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 13-Aug-2022.)
 |-  ( B  =  X  ->  ( ph  <->  ps ) )   =>    |-  ( B  =  X  ->  ( A. x  e.  V  ( ph  /\  ( A  .x.  B )  =  C )  <->  A. x  e.  V  ( ps  /\  ( A 
 .x.  X )  =  C ) ) )
 
Theoremimbrov2fvoveq 5878 Equality theorem for nested function and operation value in an implication for a binary relation. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 17-Aug-2022.)
 |-  ( X  =  Y  ->  ( ph  <->  ps ) )   =>    |-  ( X  =  Y  ->  ( ( ph  ->  ( F `  (
 ( G `  X )  .x.  O ) ) R A )  <->  ( ps  ->  ( F `  ( ( G `  Y ) 
 .x.  O ) ) R A ) ) )
 
Theoremovrspc2v 5879* If an operation value is element of a class for all operands of two classes, then the operation value is an element of the class for specific operands of the two classes. (Contributed by Mario Carneiro, 6-Dec-2014.)
 |-  ( ( ( X  e.  A  /\  Y  e.  B )  /\  A. x  e.  A  A. y  e.  B  ( x F y )  e.  C )  ->  ( X F Y )  e.  C )
 
Theoremoveqrspc2v 5880* Restricted specialization of operands, using implicit substitution. (Contributed by Mario Carneiro, 6-Dec-2014.)
 |-  ( ( ph  /\  ( x  e.  A  /\  y  e.  B )
 )  ->  ( x F y )  =  ( x G y ) )   =>    |-  ( ( ph  /\  ( X  e.  A  /\  Y  e.  B )
 )  ->  ( X F Y )  =  ( X G Y ) )
 
Theoremoveqdr 5881 Equality of two operations for any two operands. Useful in proofs using *propd theorems. (Contributed by Mario Carneiro, 29-Jun-2015.)
 |-  ( ph  ->  F  =  G )   =>    |-  ( ( ph  /\  ps )  ->  ( x F y )  =  ( x G y ) )
 
Theoremnfovd 5882 Deduction version of bound-variable hypothesis builder nfov 5883. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
 |-  ( ph  ->  F/_ x A )   &    |-  ( ph  ->  F/_ x F )   &    |-  ( ph  ->  F/_ x B )   =>    |-  ( ph  ->  F/_ x ( A F B ) )
 
Theoremnfov 5883 Bound-variable hypothesis builder for operation value. (Contributed by NM, 4-May-2004.)
 |-  F/_ x A   &    |-  F/_ x F   &    |-  F/_ x B   =>    |-  F/_ x ( A F B )
 
Theoremoprabidlem 5884* Slight elaboration of exdistrfor 1793. A lemma for oprabid 5885. (Contributed by Jim Kingdon, 15-Jan-2019.)
 |-  ( E. x E. y ( x  =  z  /\  ps )  ->  E. x ( x  =  z  /\  E. y ps ) )
 
Theoremoprabid 5885 The law of concretion. Special case of Theorem 9.5 of [Quine] p. 61. Although this theorem would be useful with a distinct variable condition between  x,  y, and  z, we use ax-bndl 1502 to eliminate that constraint. (Contributed by Mario Carneiro, 20-Mar-2013.)
 |-  ( <. <. x ,  y >. ,  z >.  e.  { <.
 <. x ,  y >. ,  z >.  |  ph }  <->  ph )
 
Theoremfnovex 5886 The result of an operation is a set. (Contributed by Jim Kingdon, 15-Jan-2019.)
 |-  ( ( F  Fn  ( C  X.  D ) 
 /\  A  e.  C  /\  B  e.  D ) 
 ->  ( A F B )  e.  _V )
 
Theoremovexg 5887 Evaluating a set operation at two sets gives a set. (Contributed by Jim Kingdon, 19-Aug-2021.)
 |-  ( ( A  e.  V  /\  F  e.  W  /\  B  e.  X ) 
 ->  ( A F B )  e.  _V )
 
Theoremovprc 5888 The value of an operation when the one of the arguments is a proper class. Note: this theorem is dependent on our particular definitions of operation value, function value, and ordered pair. (Contributed by Mario Carneiro, 26-Apr-2015.)
 |- 
 Rel  dom  F   =>    |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  ->  ( A F B )  =  (/) )
 
Theoremovprc1 5889 The value of an operation when the first argument is a proper class. (Contributed by NM, 16-Jun-2004.)
 |- 
 Rel  dom  F   =>    |-  ( -.  A  e.  _V 
 ->  ( A F B )  =  (/) )
 
Theoremovprc2 5890 The value of an operation when the second argument is a proper class. (Contributed by Mario Carneiro, 26-Apr-2015.)
 |- 
 Rel  dom  F   =>    |-  ( -.  B  e.  _V 
 ->  ( A F B )  =  (/) )
 
Theoremcsbov123g 5891 Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
 |-  ( A  e.  D  -> 
 [_ A  /  x ]_ ( B F C )  =  ( [_ A  /  x ]_ B [_ A  /  x ]_ F [_ A  /  x ]_ C ) )
 
Theoremcsbov12g 5892* Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005.)
 |-  ( A  e.  V  -> 
 [_ A  /  x ]_ ( B F C )  =  ( [_ A  /  x ]_ B F [_ A  /  x ]_ C ) )
 
Theoremcsbov1g 5893* Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005.)
 |-  ( A  e.  V  -> 
 [_ A  /  x ]_ ( B F C )  =  ( [_ A  /  x ]_ B F C ) )
 
Theoremcsbov2g 5894* Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005.)
 |-  ( A  e.  V  -> 
 [_ A  /  x ]_ ( B F C )  =  ( B F [_ A  /  x ]_ C ) )
 
Theoremrspceov 5895* A frequently used special case of rspc2ev 2849 for operation values. (Contributed by NM, 21-Mar-2007.)
 |-  ( ( C  e.  A  /\  D  e.  B  /\  S  =  ( C F D ) ) 
 ->  E. x  e.  A  E. y  e.  B  S  =  ( x F y ) )
 
Theoremfnotovb 5896 Equivalence of operation value and ordered triple membership, analogous to fnopfvb 5538. (Contributed by NM, 17-Dec-2008.) (Revised by Mario Carneiro, 28-Apr-2015.)
 |-  ( ( F  Fn  ( A  X.  B ) 
 /\  C  e.  A  /\  D  e.  B ) 
 ->  ( ( C F D )  =  R  <->  <. C ,  D ,  R >.  e.  F ) )
 
Theoremopabbrex 5897* A collection of ordered pairs with an extension of a binary relation is a set. (Contributed by Alexander van der Vekens, 1-Nov-2017.)
 |-  ( ( V  e.  _V 
 /\  E  e.  _V )  ->  ( f ( V W E ) p  ->  th )
 )   &    |-  ( ( V  e.  _V 
 /\  E  e.  _V )  ->  { <. f ,  p >.  |  th }  e.  _V )   =>    |-  ( ( V  e.  _V 
 /\  E  e.  _V )  ->  { <. f ,  p >.  |  (
 f ( V W E ) p  /\  ps ) }  e.  _V )
 
Theorem0neqopab 5898 The empty set is never an element in an ordered-pair class abstraction. (Contributed by Alexander van der Vekens, 5-Nov-2017.)
 |- 
 -.  (/)  e.  { <. x ,  y >.  |  ph }
 
Theorembrabvv 5899* If two classes are in a relationship given by an ordered-pair class abstraction, the classes are sets. (Contributed by Jim Kingdon, 16-Jan-2019.)
 |-  ( X { <. x ,  y >.  |  ph } Y  ->  ( X  e.  _V  /\  Y  e.  _V ) )
 
Theoremdfoprab2 5900* Class abstraction for operations in terms of class abstraction of ordered pairs. (Contributed by NM, 12-Mar-1995.)
 |- 
 { <. <. x ,  y >. ,  z >.  |  ph }  =  { <. w ,  z >.  |  E. x E. y ( w  = 
 <. x ,  y >.  /\  ph ) }
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14113
  Copyright terms: Public domain < Previous  Next >