| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvriotav | GIF version | ||
| Description: Change bound variable in a restricted description binder. (Contributed by NM, 18-Mar-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| cbvriotav.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvriotav | ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑦 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1574 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 2 | nfv 1574 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 3 | cbvriotav.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 4 | 1, 2, 3 | cbvriota 5966 | 1 ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑦 ∈ 𝐴 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ℩crio 5953 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-sn 3672 df-uni 3889 df-iota 5278 df-riota 5954 |
| This theorem is referenced by: axcaucvg 8087 |
| Copyright terms: Public domain | W3C validator |