| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > cbvriota | Unicode version | ||
| Description: Change bound variable in a restricted description binder. (Contributed by NM, 18-Mar-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) | 
| Ref | Expression | 
|---|---|
| cbvriota.1 | 
 | 
| cbvriota.2 | 
 | 
| cbvriota.3 | 
 | 
| Ref | Expression | 
|---|---|
| cbvriota | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eleq1 2259 | 
. . . . 5
 | |
| 2 | sbequ12 1785 | 
. . . . 5
 | |
| 3 | 1, 2 | anbi12d 473 | 
. . . 4
 | 
| 4 | nfv 1542 | 
. . . 4
 | |
| 5 | nfv 1542 | 
. . . . 5
 | |
| 6 | nfs1v 1958 | 
. . . . 5
 | |
| 7 | 5, 6 | nfan 1579 | 
. . . 4
 | 
| 8 | 3, 4, 7 | cbviota 5224 | 
. . 3
 | 
| 9 | eleq1 2259 | 
. . . . 5
 | |
| 10 | sbequ 1854 | 
. . . . . 6
 | |
| 11 | cbvriota.2 | 
. . . . . . 7
 | |
| 12 | cbvriota.3 | 
. . . . . . 7
 | |
| 13 | 11, 12 | sbie 1805 | 
. . . . . 6
 | 
| 14 | 10, 13 | bitrdi 196 | 
. . . . 5
 | 
| 15 | 9, 14 | anbi12d 473 | 
. . . 4
 | 
| 16 | nfv 1542 | 
. . . . 5
 | |
| 17 | cbvriota.1 | 
. . . . . 6
 | |
| 18 | 17 | nfsb 1965 | 
. . . . 5
 | 
| 19 | 16, 18 | nfan 1579 | 
. . . 4
 | 
| 20 | nfv 1542 | 
. . . 4
 | |
| 21 | 15, 19, 20 | cbviota 5224 | 
. . 3
 | 
| 22 | 8, 21 | eqtri 2217 | 
. 2
 | 
| 23 | df-riota 5877 | 
. 2
 | |
| 24 | df-riota 5877 | 
. 2
 | |
| 25 | 22, 23, 24 | 3eqtr4i 2227 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-sn 3628 df-uni 3840 df-iota 5219 df-riota 5877 | 
| This theorem is referenced by: cbvriotav 5889 | 
| Copyright terms: Public domain | W3C validator |