![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > clel4 | GIF version |
Description: An alternate definition of class membership when the class is a set. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
clel4.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
clel4 | ⊢ (𝐴 ∈ 𝐵 ↔ ∀𝑥(𝑥 = 𝐵 → 𝐴 ∈ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clel4.1 | . . 3 ⊢ 𝐵 ∈ V | |
2 | eleq2 2253 | . . 3 ⊢ (𝑥 = 𝐵 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐵)) | |
3 | 1, 2 | ceqsalv 2782 | . 2 ⊢ (∀𝑥(𝑥 = 𝐵 → 𝐴 ∈ 𝑥) ↔ 𝐴 ∈ 𝐵) |
4 | 3 | bicomi 132 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ ∀𝑥(𝑥 = 𝐵 → 𝐴 ∈ 𝑥)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 = wceq 1364 ∈ wcel 2160 Vcvv 2752 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-v 2754 |
This theorem is referenced by: intpr 3891 |
Copyright terms: Public domain | W3C validator |