ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clel4 GIF version

Theorem clel4 2866
Description: An alternate definition of class membership when the class is a set. (Contributed by NM, 18-Aug-1993.)
Hypothesis
Ref Expression
clel4.1 𝐵 ∈ V
Assertion
Ref Expression
clel4 (𝐴𝐵 ↔ ∀𝑥(𝑥 = 𝐵𝐴𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem clel4
StepHypRef Expression
1 clel4.1 . . 3 𝐵 ∈ V
2 eleq2 2234 . . 3 (𝑥 = 𝐵 → (𝐴𝑥𝐴𝐵))
31, 2ceqsalv 2760 . 2 (∀𝑥(𝑥 = 𝐵𝐴𝑥) ↔ 𝐴𝐵)
43bicomi 131 1 (𝐴𝐵 ↔ ∀𝑥(𝑥 = 𝐵𝐴𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1346   = wceq 1348  wcel 2141  Vcvv 2730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-v 2732
This theorem is referenced by:  intpr  3863
  Copyright terms: Public domain W3C validator