| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > clel4 | GIF version | ||
| Description: An alternate definition of class membership when the class is a set. (Contributed by NM, 18-Aug-1993.) |
| Ref | Expression |
|---|---|
| clel4.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| clel4 | ⊢ (𝐴 ∈ 𝐵 ↔ ∀𝑥(𝑥 = 𝐵 → 𝐴 ∈ 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clel4.1 | . . 3 ⊢ 𝐵 ∈ V | |
| 2 | eleq2 2260 | . . 3 ⊢ (𝑥 = 𝐵 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐵)) | |
| 3 | 1, 2 | ceqsalv 2793 | . 2 ⊢ (∀𝑥(𝑥 = 𝐵 → 𝐴 ∈ 𝑥) ↔ 𝐴 ∈ 𝐵) |
| 4 | 3 | bicomi 132 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ ∀𝑥(𝑥 = 𝐵 → 𝐴 ∈ 𝑥)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 = wceq 1364 ∈ wcel 2167 Vcvv 2763 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 |
| This theorem is referenced by: intpr 3906 |
| Copyright terms: Public domain | W3C validator |