| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intpr | Unicode version | ||
| Description: The intersection of a pair is the intersection of its members. Theorem 71 of [Suppes] p. 42. (Contributed by NM, 14-Oct-1999.) |
| Ref | Expression |
|---|---|
| intpr.1 |
|
| intpr.2 |
|
| Ref | Expression |
|---|---|
| intpr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.26 1505 |
. . . 4
| |
| 2 | vex 2779 |
. . . . . . . 8
| |
| 3 | 2 | elpr 3664 |
. . . . . . 7
|
| 4 | 3 | imbi1i 238 |
. . . . . 6
|
| 5 | jaob 712 |
. . . . . 6
| |
| 6 | 4, 5 | bitri 184 |
. . . . 5
|
| 7 | 6 | albii 1494 |
. . . 4
|
| 8 | intpr.1 |
. . . . . 6
| |
| 9 | 8 | clel4 2916 |
. . . . 5
|
| 10 | intpr.2 |
. . . . . 6
| |
| 11 | 10 | clel4 2916 |
. . . . 5
|
| 12 | 9, 11 | anbi12i 460 |
. . . 4
|
| 13 | 1, 7, 12 | 3bitr4i 212 |
. . 3
|
| 14 | vex 2779 |
. . . 4
| |
| 15 | 14 | elint 3905 |
. . 3
|
| 16 | elin 3364 |
. . 3
| |
| 17 | 13, 15, 16 | 3bitr4i 212 |
. 2
|
| 18 | 17 | eqriv 2204 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-in 3180 df-sn 3649 df-pr 3650 df-int 3900 |
| This theorem is referenced by: intprg 3932 op1stb 4543 onintexmid 4639 |
| Copyright terms: Public domain | W3C validator |