| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > intpr | Unicode version | ||
| Description: The intersection of a pair is the intersection of its members. Theorem 71 of [Suppes] p. 42. (Contributed by NM, 14-Oct-1999.) | 
| Ref | Expression | 
|---|---|
| intpr.1 | 
 | 
| intpr.2 | 
 | 
| Ref | Expression | 
|---|---|
| intpr | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 19.26 1495 | 
. . . 4
 | |
| 2 | vex 2766 | 
. . . . . . . 8
 | |
| 3 | 2 | elpr 3643 | 
. . . . . . 7
 | 
| 4 | 3 | imbi1i 238 | 
. . . . . 6
 | 
| 5 | jaob 711 | 
. . . . . 6
 | |
| 6 | 4, 5 | bitri 184 | 
. . . . 5
 | 
| 7 | 6 | albii 1484 | 
. . . 4
 | 
| 8 | intpr.1 | 
. . . . . 6
 | |
| 9 | 8 | clel4 2900 | 
. . . . 5
 | 
| 10 | intpr.2 | 
. . . . . 6
 | |
| 11 | 10 | clel4 2900 | 
. . . . 5
 | 
| 12 | 9, 11 | anbi12i 460 | 
. . . 4
 | 
| 13 | 1, 7, 12 | 3bitr4i 212 | 
. . 3
 | 
| 14 | vex 2766 | 
. . . 4
 | |
| 15 | 14 | elint 3880 | 
. . 3
 | 
| 16 | elin 3346 | 
. . 3
 | |
| 17 | 13, 15, 16 | 3bitr4i 212 | 
. 2
 | 
| 18 | 17 | eqriv 2193 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-sn 3628 df-pr 3629 df-int 3875 | 
| This theorem is referenced by: intprg 3907 op1stb 4513 onintexmid 4609 | 
| Copyright terms: Public domain | W3C validator |