ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intpr Unicode version

Theorem intpr 3891
Description: The intersection of a pair is the intersection of its members. Theorem 71 of [Suppes] p. 42. (Contributed by NM, 14-Oct-1999.)
Hypotheses
Ref Expression
intpr.1  |-  A  e. 
_V
intpr.2  |-  B  e. 
_V
Assertion
Ref Expression
intpr  |-  |^| { A ,  B }  =  ( A  i^i  B )

Proof of Theorem intpr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.26 1492 . . . 4  |-  ( A. y ( ( y  =  A  ->  x  e.  y )  /\  (
y  =  B  ->  x  e.  y )
)  <->  ( A. y
( y  =  A  ->  x  e.  y )  /\  A. y
( y  =  B  ->  x  e.  y ) ) )
2 vex 2755 . . . . . . . 8  |-  y  e. 
_V
32elpr 3628 . . . . . . 7  |-  ( y  e.  { A ,  B }  <->  ( y  =  A  \/  y  =  B ) )
43imbi1i 238 . . . . . 6  |-  ( ( y  e.  { A ,  B }  ->  x  e.  y )  <->  ( (
y  =  A  \/  y  =  B )  ->  x  e.  y ) )
5 jaob 711 . . . . . 6  |-  ( ( ( y  =  A  \/  y  =  B )  ->  x  e.  y )  <->  ( (
y  =  A  ->  x  e.  y )  /\  ( y  =  B  ->  x  e.  y ) ) )
64, 5bitri 184 . . . . 5  |-  ( ( y  e.  { A ,  B }  ->  x  e.  y )  <->  ( (
y  =  A  ->  x  e.  y )  /\  ( y  =  B  ->  x  e.  y ) ) )
76albii 1481 . . . 4  |-  ( A. y ( y  e. 
{ A ,  B }  ->  x  e.  y )  <->  A. y ( ( y  =  A  ->  x  e.  y )  /\  ( y  =  B  ->  x  e.  y ) ) )
8 intpr.1 . . . . . 6  |-  A  e. 
_V
98clel4 2888 . . . . 5  |-  ( x  e.  A  <->  A. y
( y  =  A  ->  x  e.  y ) )
10 intpr.2 . . . . . 6  |-  B  e. 
_V
1110clel4 2888 . . . . 5  |-  ( x  e.  B  <->  A. y
( y  =  B  ->  x  e.  y ) )
129, 11anbi12i 460 . . . 4  |-  ( ( x  e.  A  /\  x  e.  B )  <->  ( A. y ( y  =  A  ->  x  e.  y )  /\  A. y ( y  =  B  ->  x  e.  y ) ) )
131, 7, 123bitr4i 212 . . 3  |-  ( A. y ( y  e. 
{ A ,  B }  ->  x  e.  y )  <->  ( x  e.  A  /\  x  e.  B ) )
14 vex 2755 . . . 4  |-  x  e. 
_V
1514elint 3865 . . 3  |-  ( x  e.  |^| { A ,  B }  <->  A. y ( y  e.  { A ,  B }  ->  x  e.  y ) )
16 elin 3333 . . 3  |-  ( x  e.  ( A  i^i  B )  <->  ( x  e.  A  /\  x  e.  B ) )
1713, 15, 163bitr4i 212 . 2  |-  ( x  e.  |^| { A ,  B }  <->  x  e.  ( A  i^i  B ) )
1817eqriv 2186 1  |-  |^| { A ,  B }  =  ( A  i^i  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709   A.wal 1362    = wceq 1364    e. wcel 2160   _Vcvv 2752    i^i cin 3143   {cpr 3608   |^|cint 3859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2754  df-un 3148  df-in 3150  df-sn 3613  df-pr 3614  df-int 3860
This theorem is referenced by:  intprg  3892  op1stb  4493  onintexmid  4587
  Copyright terms: Public domain W3C validator