ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elsb1 Unicode version

Theorem elsb1 2153
Description: Substitution for the first argument of the non-logical predicate in an atomic formula. See elsb2 2154 for substitution for the second argument. (Contributed by NM, 7-Nov-2006.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Assertion
Ref Expression
elsb1  |-  ( [ y  /  x ]
x  e.  z  <->  y  e.  z )
Distinct variable group:    x, z

Proof of Theorem elsb1
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 ax-17 1524 . . . . 5  |-  ( x  e.  z  ->  A. w  x  e.  z )
2 elequ1 2150 . . . . 5  |-  ( w  =  x  ->  (
w  e.  z  <->  x  e.  z ) )
31, 2sbieh 1788 . . . 4  |-  ( [ x  /  w ]
w  e.  z  <->  x  e.  z )
43sbbii 1763 . . 3  |-  ( [ y  /  x ] [ x  /  w ] w  e.  z  <->  [ y  /  x ]
x  e.  z )
5 ax-17 1524 . . . 4  |-  ( w  e.  z  ->  A. x  w  e.  z )
65sbco2h 1962 . . 3  |-  ( [ y  /  x ] [ x  /  w ] w  e.  z  <->  [ y  /  w ]
w  e.  z )
74, 6bitr3i 186 . 2  |-  ( [ y  /  x ]
x  e.  z  <->  [ y  /  w ] w  e.  z )
8 equsb1 1783 . . . 4  |-  [ y  /  w ] w  =  y
9 elequ1 2150 . . . . 5  |-  ( w  =  y  ->  (
w  e.  z  <->  y  e.  z ) )
109sbimi 1762 . . . 4  |-  ( [ y  /  w ]
w  =  y  ->  [ y  /  w ] ( w  e.  z  <->  y  e.  z ) )
118, 10ax-mp 5 . . 3  |-  [ y  /  w ] ( w  e.  z  <->  y  e.  z )
12 sbbi 1957 . . 3  |-  ( [ y  /  w ]
( w  e.  z  <-> 
y  e.  z )  <-> 
( [ y  /  w ] w  e.  z  <->  [ y  /  w ] y  e.  z ) )
1311, 12mpbi 145 . 2  |-  ( [ y  /  w ]
w  e.  z  <->  [ y  /  w ] y  e.  z )
14 ax-17 1524 . . 3  |-  ( y  e.  z  ->  A. w  y  e.  z )
1514sbh 1774 . 2  |-  ( [ y  /  w ]
y  e.  z  <->  y  e.  z )
167, 13, 153bitri 206 1  |-  ( [ y  /  x ]
x  e.  z  <->  y  e.  z )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   [wsb 1760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148
This theorem depends on definitions:  df-bi 117  df-nf 1459  df-sb 1761
This theorem is referenced by:  cvjust  2170
  Copyright terms: Public domain W3C validator