ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elequ1 Unicode version

Theorem elequ1 2182
Description: An identity law for the non-logical predicate. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
elequ1  |-  ( x  =  y  ->  (
x  e.  z  <->  y  e.  z ) )

Proof of Theorem elequ1
StepHypRef Expression
1 ax-13 2180 . 2  |-  ( x  =  y  ->  (
x  e.  z  -> 
y  e.  z ) )
2 ax-13 2180 . . 3  |-  ( y  =  x  ->  (
y  e.  z  ->  x  e.  z )
)
32equcoms 1732 . 2  |-  ( x  =  y  ->  (
y  e.  z  ->  x  e.  z )
)
41, 3impbid 129 1  |-  ( x  =  y  ->  (
x  e.  z  <->  y  e.  z ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1473  ax-ie2 1518  ax-8 1528  ax-17 1550  ax-i9 1554  ax-13 2180
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  cleljust  2184  elsb1  2185  dveel1  2187  nalset  4190  zfpow  4235  mss  4288  zfun  4499  pw2f1odclem  6956  ctssdc  7241  acfun  7350  ccfunen  7411  bj-nalset  16030  bj-nnelirr  16088  2omap  16132  pw1map  16134  nninfsellemqall  16154  nninfomni  16158
  Copyright terms: Public domain W3C validator