ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elequ1 Unicode version

Theorem elequ1 2145
Description: An identity law for the non-logical predicate. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
elequ1  |-  ( x  =  y  ->  (
x  e.  z  <->  y  e.  z ) )

Proof of Theorem elequ1
StepHypRef Expression
1 ax-13 2143 . 2  |-  ( x  =  y  ->  (
x  e.  z  -> 
y  e.  z ) )
2 ax-13 2143 . . 3  |-  ( y  =  x  ->  (
y  e.  z  ->  x  e.  z )
)
32equcoms 1701 . 2  |-  ( x  =  y  ->  (
y  e.  z  ->  x  e.  z )
)
41, 3impbid 128 1  |-  ( x  =  y  ->  (
x  e.  z  <->  y  e.  z ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-gen 1442  ax-ie2 1487  ax-8 1497  ax-17 1519  ax-i9 1523  ax-13 2143
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  cleljust  2147  elsb1  2148  dveel1  2150  nalset  4119  zfpow  4161  mss  4211  zfun  4419  ctssdc  7090  acfun  7184  ccfunen  7226  bj-nalset  13930  bj-nnelirr  13988  nninfsellemqall  14048  nninfomni  14052
  Copyright terms: Public domain W3C validator