| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elequ1 | Unicode version | ||
| Description: An identity law for the non-logical predicate. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| elequ1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-13 2178 |
. 2
| |
| 2 | ax-13 2178 |
. . 3
| |
| 3 | 2 | equcoms 1731 |
. 2
|
| 4 | 1, 3 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1472 ax-ie2 1517 ax-8 1527 ax-17 1549 ax-i9 1553 ax-13 2178 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: cleljust 2182 elsb1 2183 dveel1 2185 nalset 4174 zfpow 4219 mss 4270 zfun 4481 pw2f1odclem 6931 ctssdc 7215 acfun 7319 ccfunen 7376 bj-nalset 15831 bj-nnelirr 15889 2omap 15932 nninfsellemqall 15952 nninfomni 15956 |
| Copyright terms: Public domain | W3C validator |