ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elequ1 Unicode version

Theorem elequ1 2180
Description: An identity law for the non-logical predicate. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
elequ1  |-  ( x  =  y  ->  (
x  e.  z  <->  y  e.  z ) )

Proof of Theorem elequ1
StepHypRef Expression
1 ax-13 2178 . 2  |-  ( x  =  y  ->  (
x  e.  z  -> 
y  e.  z ) )
2 ax-13 2178 . . 3  |-  ( y  =  x  ->  (
y  e.  z  ->  x  e.  z )
)
32equcoms 1731 . 2  |-  ( x  =  y  ->  (
y  e.  z  ->  x  e.  z )
)
41, 3impbid 129 1  |-  ( x  =  y  ->  (
x  e.  z  <->  y  e.  z ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1472  ax-ie2 1517  ax-8 1527  ax-17 1549  ax-i9 1553  ax-13 2178
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  cleljust  2182  elsb1  2183  dveel1  2185  nalset  4174  zfpow  4219  mss  4270  zfun  4481  pw2f1odclem  6931  ctssdc  7215  acfun  7319  ccfunen  7376  bj-nalset  15831  bj-nnelirr  15889  2omap  15932  nninfsellemqall  15952  nninfomni  15956
  Copyright terms: Public domain W3C validator