| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > equsex | Unicode version | ||
| Description: A useful equivalence related to substitution. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 3-Feb-2015.) | 
| Ref | Expression | 
|---|---|
| equsex.1 | 
 | 
| equsex.2 | 
 | 
| Ref | Expression | 
|---|---|
| equsex | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | equsex.1 | 
. . 3
 | |
| 2 | equsex.2 | 
. . . 4
 | |
| 3 | 2 | biimpa 296 | 
. . 3
 | 
| 4 | 1, 3 | exlimih 1607 | 
. 2
 | 
| 5 | a9e 1710 | 
. . 3
 | |
| 6 | idd 21 | 
. . . . 5
 | |
| 7 | 2 | biimprcd 160 | 
. . . . 5
 | 
| 8 | 6, 7 | jcad 307 | 
. . . 4
 | 
| 9 | 1, 8 | eximdh 1625 | 
. . 3
 | 
| 10 | 5, 9 | mpi 15 | 
. 2
 | 
| 11 | 4, 10 | impbii 126 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-i9 1544 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: cbvexv1 1766 cbvexh 1769 sb56 1900 sb10f 2014 cleljust 2173 | 
| Copyright terms: Public domain | W3C validator |