ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  phiprmpw Unicode version

Theorem phiprmpw 12363
Description: Value of the Euler  phi function at a prime power. Theorem 2.5(a) in [ApostolNT] p. 28. (Contributed by Mario Carneiro, 24-Feb-2014.)
Assertion
Ref Expression
phiprmpw  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( phi `  ( P ^ K ) )  =  ( ( P ^
( K  -  1 ) )  x.  ( P  -  1 ) ) )

Proof of Theorem phiprmpw
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 prmnn 12251 . . . 4  |-  ( P  e.  Prime  ->  P  e.  NN )
2 nnnn0 9250 . . . 4  |-  ( K  e.  NN  ->  K  e.  NN0 )
3 nnexpcl 10626 . . . 4  |-  ( ( P  e.  NN  /\  K  e.  NN0 )  -> 
( P ^ K
)  e.  NN )
41, 2, 3syl2an 289 . . 3  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( P ^ K )  e.  NN )
5 phival 12354 . . 3  |-  ( ( P ^ K )  e.  NN  ->  ( phi `  ( P ^ K ) )  =  ( `  { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } ) )
64, 5syl 14 . 2  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( phi `  ( P ^ K ) )  =  ( `  { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } ) )
7 nnm1nn0 9284 . . . . . 6  |-  ( K  e.  NN  ->  ( K  -  1 )  e.  NN0 )
8 nnexpcl 10626 . . . . . 6  |-  ( ( P  e.  NN  /\  ( K  -  1
)  e.  NN0 )  ->  ( P ^ ( K  -  1 ) )  e.  NN )
91, 7, 8syl2an 289 . . . . 5  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( P ^ ( K  - 
1 ) )  e.  NN )
109nncnd 8998 . . . 4  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( P ^ ( K  - 
1 ) )  e.  CC )
111nncnd 8998 . . . . 5  |-  ( P  e.  Prime  ->  P  e.  CC )
1211adantr 276 . . . 4  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  P  e.  CC )
13 ax-1cn 7967 . . . . 5  |-  1  e.  CC
14 subdi 8406 . . . . 5  |-  ( ( ( P ^ ( K  -  1 ) )  e.  CC  /\  P  e.  CC  /\  1  e.  CC )  ->  (
( P ^ ( K  -  1 ) )  x.  ( P  -  1 ) )  =  ( ( ( P ^ ( K  -  1 ) )  x.  P )  -  ( ( P ^
( K  -  1 ) )  x.  1 ) ) )
1513, 14mp3an3 1337 . . . 4  |-  ( ( ( P ^ ( K  -  1 ) )  e.  CC  /\  P  e.  CC )  ->  ( ( P ^
( K  -  1 ) )  x.  ( P  -  1 ) )  =  ( ( ( P ^ ( K  -  1 ) )  x.  P )  -  ( ( P ^ ( K  - 
1 ) )  x.  1 ) ) )
1610, 12, 15syl2anc 411 . . 3  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( P ^ ( K  -  1 ) )  x.  ( P  -  1 ) )  =  ( ( ( P ^ ( K  -  1 ) )  x.  P )  -  ( ( P ^
( K  -  1 ) )  x.  1 ) ) )
1710mulridd 8038 . . . 4  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( P ^ ( K  -  1 ) )  x.  1 )  =  ( P ^
( K  -  1 ) ) )
1817oveq2d 5935 . . 3  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( ( P ^
( K  -  1 ) )  x.  P
)  -  ( ( P ^ ( K  -  1 ) )  x.  1 ) )  =  ( ( ( P ^ ( K  -  1 ) )  x.  P )  -  ( P ^ ( K  -  1 ) ) ) )
19 phivalfi 12353 . . . . . . 7  |-  ( ( P ^ K )  e.  NN  ->  { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 }  e.  Fin )
204, 19syl 14 . . . . . 6  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 }  e.  Fin )
21 1zzd 9347 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  1  e.  ZZ )
22 prmz 12252 . . . . . . . . 9  |-  ( P  e.  Prime  ->  P  e.  ZZ )
23 zexpcl 10628 . . . . . . . . 9  |-  ( ( P  e.  ZZ  /\  K  e.  NN0 )  -> 
( P ^ K
)  e.  ZZ )
2422, 2, 23syl2an 289 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( P ^ K )  e.  ZZ )
2521, 24fzfigd 10505 . . . . . . 7  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
1 ... ( P ^ K ) )  e. 
Fin )
2622ad2antrr 488 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ( 1 ... ( P ^ K ) ) )  ->  P  e.  ZZ )
27 elfzelz 10094 . . . . . . . . . . 11  |-  ( x  e.  ( 1 ... ( P ^ K
) )  ->  x  e.  ZZ )
2827adantl 277 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ( 1 ... ( P ^ K ) ) )  ->  x  e.  ZZ )
29 0zd 9332 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ( 1 ... ( P ^ K ) ) )  ->  0  e.  ZZ )
3028, 29zsubcld 9447 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ( 1 ... ( P ^ K ) ) )  ->  ( x  -  0 )  e.  ZZ )
31 zdvdsdc 11958 . . . . . . . . 9  |-  ( ( P  e.  ZZ  /\  ( x  -  0
)  e.  ZZ )  -> DECID 
P  ||  ( x  -  0 ) )
3226, 30, 31syl2anc 411 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ( 1 ... ( P ^ K ) ) )  -> DECID  P  ||  ( x  -  0 ) )
3332ralrimiva 2567 . . . . . . 7  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  A. x  e.  ( 1 ... ( P ^ K ) )DECID  P 
||  ( x  - 
0 ) )
3425, 33ssfirab 6992 . . . . . 6  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  { x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  (
x  -  0 ) }  e.  Fin )
35 inrab 3432 . . . . . . 7  |-  ( { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 }  i^i  { x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  ( x  -  0 ) } )  =  { x  e.  ( 1 ... ( P ^ K ) )  |  ( ( x  gcd  ( P ^ K ) )  =  1  /\  P  ||  ( x  -  0
) ) }
36 rpexp 12294 . . . . . . . . . . . . . . . . 17  |-  ( ( P  e.  ZZ  /\  x  e.  ZZ  /\  K  e.  NN )  ->  (
( ( P ^ K )  gcd  x
)  =  1  <->  ( P  gcd  x )  =  1 ) )
3722, 36syl3an1 1282 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  Prime  /\  x  e.  ZZ  /\  K  e.  NN )  ->  (
( ( P ^ K )  gcd  x
)  =  1  <->  ( P  gcd  x )  =  1 ) )
38373expa 1205 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  x  e.  ZZ )  /\  K  e.  NN )  ->  ( ( ( P ^ K )  gcd  x )  =  1  <->  ( P  gcd  x )  =  1 ) )
3938an32s 568 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ZZ )  ->  ( ( ( P ^ K )  gcd  x )  =  1  <->  ( P  gcd  x )  =  1 ) )
40 simpr 110 . . . . . . . . . . . . . . . 16  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ZZ )  ->  x  e.  ZZ )
4124adantr 276 . . . . . . . . . . . . . . . 16  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ZZ )  ->  ( P ^ K )  e.  ZZ )
42 gcdcom 12113 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ZZ  /\  ( P ^ K )  e.  ZZ )  -> 
( x  gcd  ( P ^ K ) )  =  ( ( P ^ K )  gcd  x ) )
4340, 41, 42syl2anc 411 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ZZ )  ->  ( x  gcd  ( P ^ K ) )  =  ( ( P ^ K )  gcd  x ) )
4443eqeq1d 2202 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ZZ )  ->  ( ( x  gcd  ( P ^ K ) )  =  1  <->  ( ( P ^ K )  gcd  x )  =  1 ) )
45 coprm 12285 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  Prime  /\  x  e.  ZZ )  ->  ( -.  P  ||  x  <->  ( P  gcd  x )  =  1 ) )
4645adantlr 477 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ZZ )  ->  ( -.  P  ||  x  <->  ( P  gcd  x )  =  1 ) )
4739, 44, 463bitr4d 220 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ZZ )  ->  ( ( x  gcd  ( P ^ K ) )  =  1  <->  -.  P  ||  x
) )
48 zcn 9325 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ZZ  ->  x  e.  CC )
4948adantl 277 . . . . . . . . . . . . . . . 16  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ZZ )  ->  x  e.  CC )
5049subid1d 8321 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ZZ )  ->  ( x  - 
0 )  =  x )
5150breq2d 4042 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ZZ )  ->  ( P  ||  ( x  -  0
)  <->  P  ||  x ) )
5251notbid 668 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ZZ )  ->  ( -.  P  ||  ( x  -  0 )  <->  -.  P  ||  x
) )
5347, 52bitr4d 191 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ZZ )  ->  ( ( x  gcd  ( P ^ K ) )  =  1  <->  -.  P  ||  (
x  -  0 ) ) )
5427, 53sylan2 286 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ( 1 ... ( P ^ K ) ) )  ->  ( (
x  gcd  ( P ^ K ) )  =  1  <->  -.  P  ||  (
x  -  0 ) ) )
5554biimpd 144 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ( 1 ... ( P ^ K ) ) )  ->  ( (
x  gcd  ( P ^ K ) )  =  1  ->  -.  P  ||  ( x  -  0 ) ) )
56 imnan 691 . . . . . . . . . 10  |-  ( ( ( x  gcd  ( P ^ K ) )  =  1  ->  -.  P  ||  ( x  - 
0 ) )  <->  -.  (
( x  gcd  ( P ^ K ) )  =  1  /\  P  ||  ( x  -  0 ) ) )
5755, 56sylib 122 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ( 1 ... ( P ^ K ) ) )  ->  -.  (
( x  gcd  ( P ^ K ) )  =  1  /\  P  ||  ( x  -  0 ) ) )
5857ralrimiva 2567 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  A. x  e.  ( 1 ... ( P ^ K ) )  -.  ( ( x  gcd  ( P ^ K ) )  =  1  /\  P  ||  ( x  -  0
) ) )
59 rabeq0 3477 . . . . . . . 8  |-  ( { x  e.  ( 1 ... ( P ^ K ) )  |  ( ( x  gcd  ( P ^ K ) )  =  1  /\  P  ||  ( x  -  0 ) ) }  =  (/)  <->  A. x  e.  ( 1 ... ( P ^ K ) )  -.  ( ( x  gcd  ( P ^ K ) )  =  1  /\  P  ||  ( x  -  0
) ) )
6058, 59sylibr 134 . . . . . . 7  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  { x  e.  ( 1 ... ( P ^ K ) )  |  ( ( x  gcd  ( P ^ K ) )  =  1  /\  P  ||  ( x  -  0
) ) }  =  (/) )
6135, 60eqtrid 2238 . . . . . 6  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( { x  e.  (
1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 }  i^i  { x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  ( x  -  0 ) } )  =  (/) )
62 hashun 10879 . . . . . 6  |-  ( ( { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 }  e.  Fin  /\  {
x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  ( x  -  0 ) }  e.  Fin  /\  ( { x  e.  (
1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 }  i^i  { x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  ( x  -  0 ) } )  =  (/) )  -> 
( `  ( { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 }  u.  { x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  (
x  -  0 ) } ) )  =  ( ( `  {
x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } )  +  ( `  {
x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  ( x  -  0 ) } ) ) )
6320, 34, 61, 62syl3anc 1249 . . . . 5  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( `  ( { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 }  u.  { x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  (
x  -  0 ) } ) )  =  ( ( `  {
x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } )  +  ( `  {
x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  ( x  -  0 ) } ) ) )
64 unrab 3431 . . . . . . . 8  |-  ( { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 }  u.  { x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  ( x  -  0 ) } )  =  { x  e.  ( 1 ... ( P ^ K ) )  |  ( ( x  gcd  ( P ^ K ) )  =  1  \/  P  ||  ( x  -  0
) ) }
6554biimprd 158 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ( 1 ... ( P ^ K ) ) )  ->  ( -.  P  ||  ( x  - 
0 )  ->  (
x  gcd  ( P ^ K ) )  =  1 ) )
66 con1dc 857 . . . . . . . . . . . 12  |-  (DECID  P  ||  ( x  -  0
)  ->  ( ( -.  P  ||  ( x  -  0 )  -> 
( x  gcd  ( P ^ K ) )  =  1 )  -> 
( -.  ( x  gcd  ( P ^ K ) )  =  1  ->  P  ||  (
x  -  0 ) ) ) )
6732, 65, 66sylc 62 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ( 1 ... ( P ^ K ) ) )  ->  ( -.  ( x  gcd  ( P ^ K ) )  =  1  ->  P  ||  ( x  -  0 ) ) )
6824adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ( 1 ... ( P ^ K ) ) )  ->  ( P ^ K )  e.  ZZ )
6928, 68gcdcld 12108 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ( 1 ... ( P ^ K ) ) )  ->  ( x  gcd  ( P ^ K
) )  e.  NN0 )
7069nn0zd 9440 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ( 1 ... ( P ^ K ) ) )  ->  ( x  gcd  ( P ^ K
) )  e.  ZZ )
71 1zzd 9347 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ( 1 ... ( P ^ K ) ) )  ->  1  e.  ZZ )
72 zdceq 9395 . . . . . . . . . . . . 13  |-  ( ( ( x  gcd  ( P ^ K ) )  e.  ZZ  /\  1  e.  ZZ )  -> DECID  ( x  gcd  ( P ^ K ) )  =  1 )
7370, 71, 72syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ( 1 ... ( P ^ K ) ) )  -> DECID  ( x  gcd  ( P ^ K ) )  =  1 )
74 dfordc 893 . . . . . . . . . . . 12  |-  (DECID  ( x  gcd  ( P ^ K ) )  =  1  ->  ( (
( x  gcd  ( P ^ K ) )  =  1  \/  P  ||  ( x  -  0 ) )  <->  ( -.  ( x  gcd  ( P ^ K ) )  =  1  ->  P  ||  ( x  -  0 ) ) ) )
7573, 74syl 14 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ( 1 ... ( P ^ K ) ) )  ->  ( (
( x  gcd  ( P ^ K ) )  =  1  \/  P  ||  ( x  -  0 ) )  <->  ( -.  ( x  gcd  ( P ^ K ) )  =  1  ->  P  ||  ( x  -  0 ) ) ) )
7667, 75mpbird 167 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ( 1 ... ( P ^ K ) ) )  ->  ( (
x  gcd  ( P ^ K ) )  =  1  \/  P  ||  ( x  -  0
) ) )
7776ralrimiva 2567 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  A. x  e.  ( 1 ... ( P ^ K ) ) ( ( x  gcd  ( P ^ K ) )  =  1  \/  P  ||  ( x  -  0 ) ) )
78 rabid2 2671 . . . . . . . . 9  |-  ( ( 1 ... ( P ^ K ) )  =  { x  e.  ( 1 ... ( P ^ K ) )  |  ( ( x  gcd  ( P ^ K ) )  =  1  \/  P  ||  ( x  -  0
) ) }  <->  A. x  e.  ( 1 ... ( P ^ K ) ) ( ( x  gcd  ( P ^ K ) )  =  1  \/  P  ||  ( x  -  0 ) ) )
7977, 78sylibr 134 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
1 ... ( P ^ K ) )  =  { x  e.  ( 1 ... ( P ^ K ) )  |  ( ( x  gcd  ( P ^ K ) )  =  1  \/  P  ||  ( x  -  0
) ) } )
8064, 79eqtr4id 2245 . . . . . . 7  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( { x  e.  (
1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 }  u.  { x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  ( x  -  0 ) } )  =  ( 1 ... ( P ^ K ) ) )
8180fveq2d 5559 . . . . . 6  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( `  ( { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 }  u.  { x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  (
x  -  0 ) } ) )  =  ( `  ( 1 ... ( P ^ K
) ) ) )
824nnnn0d 9296 . . . . . . 7  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( P ^ K )  e. 
NN0 )
83 hashfz1 10857 . . . . . . 7  |-  ( ( P ^ K )  e.  NN0  ->  ( `  (
1 ... ( P ^ K ) ) )  =  ( P ^ K ) )
8482, 83syl 14 . . . . . 6  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( `  ( 1 ... ( P ^ K ) ) )  =  ( P ^ K ) )
85 expm1t 10641 . . . . . . 7  |-  ( ( P  e.  CC  /\  K  e.  NN )  ->  ( P ^ K
)  =  ( ( P ^ ( K  -  1 ) )  x.  P ) )
8611, 85sylan 283 . . . . . 6  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( P ^ K )  =  ( ( P ^
( K  -  1 ) )  x.  P
) )
8781, 84, 863eqtrd 2230 . . . . 5  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( `  ( { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 }  u.  { x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  (
x  -  0 ) } ) )  =  ( ( P ^
( K  -  1 ) )  x.  P
) )
88 hashcl 10855 . . . . . . . 8  |-  ( { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 }  e.  Fin  ->  ( `  { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } )  e.  NN0 )
8920, 88syl 14 . . . . . . 7  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( `  { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } )  e.  NN0 )
9089nn0cnd 9298 . . . . . 6  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( `  { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } )  e.  CC )
911adantr 276 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  P  e.  NN )
92 nn0uz 9630 . . . . . . . . . . 11  |-  NN0  =  ( ZZ>= `  0 )
93 1m1e0 9053 . . . . . . . . . . . 12  |-  ( 1  -  1 )  =  0
9493fveq2i 5558 . . . . . . . . . . 11  |-  ( ZZ>= `  ( 1  -  1 ) )  =  (
ZZ>= `  0 )
9592, 94eqtr4i 2217 . . . . . . . . . 10  |-  NN0  =  ( ZZ>= `  ( 1  -  1 ) )
9682, 95eleqtrdi 2286 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( P ^ K )  e.  ( ZZ>= `  ( 1  -  1 ) ) )
97 0zd 9332 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  0  e.  ZZ )
9891, 21, 96, 97hashdvds 12362 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( `  { x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  (
x  -  0 ) } )  =  ( ( |_ `  (
( ( P ^ K )  -  0 )  /  P ) )  -  ( |_
`  ( ( ( 1  -  1 )  -  0 )  /  P ) ) ) )
994nncnd 8998 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( P ^ K )  e.  CC )
10099subid1d 8321 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( P ^ K
)  -  0 )  =  ( P ^ K ) )
101100oveq1d 5934 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( ( P ^ K )  -  0 )  /  P )  =  ( ( P ^ K )  /  P ) )
10291nnap0d 9030 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  P #  0 )
103 nnz 9339 . . . . . . . . . . . . . 14  |-  ( K  e.  NN  ->  K  e.  ZZ )
104103adantl 277 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  K  e.  ZZ )
10512, 102, 104expm1apd 10757 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( P ^ ( K  - 
1 ) )  =  ( ( P ^ K )  /  P
) )
106101, 105eqtr4d 2229 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( ( P ^ K )  -  0 )  /  P )  =  ( P ^
( K  -  1 ) ) )
107106fveq2d 5559 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( |_ `  ( ( ( P ^ K )  -  0 )  /  P ) )  =  ( |_ `  ( P ^ ( K  - 
1 ) ) ) )
1089nnzd 9441 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( P ^ ( K  - 
1 ) )  e.  ZZ )
109 flid 10356 . . . . . . . . . . 11  |-  ( ( P ^ ( K  -  1 ) )  e.  ZZ  ->  ( |_ `  ( P ^
( K  -  1 ) ) )  =  ( P ^ ( K  -  1 ) ) )
110108, 109syl 14 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( |_ `  ( P ^
( K  -  1 ) ) )  =  ( P ^ ( K  -  1 ) ) )
111107, 110eqtrd 2226 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( |_ `  ( ( ( P ^ K )  -  0 )  /  P ) )  =  ( P ^ ( K  -  1 ) ) )
11293oveq1i 5929 . . . . . . . . . . . . . 14  |-  ( ( 1  -  1 )  -  0 )  =  ( 0  -  0 )
113 0m0e0 9096 . . . . . . . . . . . . . 14  |-  ( 0  -  0 )  =  0
114112, 113eqtri 2214 . . . . . . . . . . . . 13  |-  ( ( 1  -  1 )  -  0 )  =  0
115114oveq1i 5929 . . . . . . . . . . . 12  |-  ( ( ( 1  -  1 )  -  0 )  /  P )  =  ( 0  /  P
)
11612, 102div0apd 8808 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
0  /  P )  =  0 )
117115, 116eqtrid 2238 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( ( 1  -  1 )  -  0 )  /  P )  =  0 )
118117fveq2d 5559 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( |_ `  ( ( ( 1  -  1 )  -  0 )  /  P ) )  =  ( |_ `  0
) )
119 0z 9331 . . . . . . . . . . 11  |-  0  e.  ZZ
120 flid 10356 . . . . . . . . . . 11  |-  ( 0  e.  ZZ  ->  ( |_ `  0 )  =  0 )
121119, 120ax-mp 5 . . . . . . . . . 10  |-  ( |_
`  0 )  =  0
122118, 121eqtrdi 2242 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( |_ `  ( ( ( 1  -  1 )  -  0 )  /  P ) )  =  0 )
123111, 122oveq12d 5937 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( |_ `  (
( ( P ^ K )  -  0 )  /  P ) )  -  ( |_
`  ( ( ( 1  -  1 )  -  0 )  /  P ) ) )  =  ( ( P ^ ( K  - 
1 ) )  - 
0 ) )
12410subid1d 8321 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( P ^ ( K  -  1 ) )  -  0 )  =  ( P ^
( K  -  1 ) ) )
12598, 123, 1243eqtrd 2230 . . . . . . 7  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( `  { x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  (
x  -  0 ) } )  =  ( P ^ ( K  -  1 ) ) )
126125oveq2d 5935 . . . . . 6  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( `  { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } )  +  ( `  {
x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  ( x  -  0 ) } ) )  =  ( ( `  { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } )  +  ( P ^ ( K  - 
1 ) ) ) )
12790, 10, 126comraddd 8178 . . . . 5  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( `  { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } )  +  ( `  {
x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  ( x  -  0 ) } ) )  =  ( ( P ^ ( K  -  1 ) )  +  ( `  {
x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } ) ) )
12863, 87, 1273eqtr3rd 2235 . . . 4  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( P ^ ( K  -  1 ) )  +  ( `  {
x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } ) )  =  ( ( P ^ ( K  -  1 ) )  x.  P ) )
12910, 12mulcld 8042 . . . . 5  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( P ^ ( K  -  1 ) )  x.  P )  e.  CC )
130129, 10, 90subaddd 8350 . . . 4  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( ( ( P ^ ( K  - 
1 ) )  x.  P )  -  ( P ^ ( K  - 
1 ) ) )  =  ( `  {
x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } )  <-> 
( ( P ^
( K  -  1 ) )  +  ( `  { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } ) )  =  ( ( P ^ ( K  -  1 ) )  x.  P ) ) )
131128, 130mpbird 167 . . 3  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( ( P ^
( K  -  1 ) )  x.  P
)  -  ( P ^ ( K  - 
1 ) ) )  =  ( `  {
x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } ) )
13216, 18, 1313eqtrrd 2231 . 2  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( `  { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } )  =  ( ( P ^ ( K  -  1 ) )  x.  ( P  - 
1 ) ) )
1336, 132eqtrd 2226 1  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( phi `  ( P ^ K ) )  =  ( ( P ^
( K  -  1 ) )  x.  ( P  -  1 ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    = wceq 1364    e. wcel 2164   A.wral 2472   {crab 2476    u. cun 3152    i^i cin 3153   (/)c0 3447   class class class wbr 4030   ` cfv 5255  (class class class)co 5919   Fincfn 6796   CCcc 7872   0cc0 7874   1c1 7875    + caddc 7877    x. cmul 7879    - cmin 8192    / cdiv 8693   NNcn 8984   NN0cn0 9243   ZZcz 9320   ZZ>=cuz 9595   ...cfz 10077   |_cfl 10340   ^cexp 10612  ♯chash 10849    || cdvds 11933    gcd cgcd 12082   Primecprime 12248   phicphi 12350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-frec 6446  df-1o 6471  df-2o 6472  df-oadd 6475  df-er 6589  df-en 6797  df-dom 6798  df-fin 6799  df-sup 7045  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-fz 10078  df-fzo 10212  df-fl 10342  df-mod 10397  df-seqfrec 10522  df-exp 10613  df-ihash 10850  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-dvds 11934  df-gcd 12083  df-prm 12249  df-phi 12352
This theorem is referenced by:  phiprm  12364
  Copyright terms: Public domain W3C validator