ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  phiprmpw Unicode version

Theorem phiprmpw 12739
Description: Value of the Euler  phi function at a prime power. Theorem 2.5(a) in [ApostolNT] p. 28. (Contributed by Mario Carneiro, 24-Feb-2014.)
Assertion
Ref Expression
phiprmpw  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( phi `  ( P ^ K ) )  =  ( ( P ^
( K  -  1 ) )  x.  ( P  -  1 ) ) )

Proof of Theorem phiprmpw
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 prmnn 12627 . . . 4  |-  ( P  e.  Prime  ->  P  e.  NN )
2 nnnn0 9372 . . . 4  |-  ( K  e.  NN  ->  K  e.  NN0 )
3 nnexpcl 10769 . . . 4  |-  ( ( P  e.  NN  /\  K  e.  NN0 )  -> 
( P ^ K
)  e.  NN )
41, 2, 3syl2an 289 . . 3  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( P ^ K )  e.  NN )
5 phival 12730 . . 3  |-  ( ( P ^ K )  e.  NN  ->  ( phi `  ( P ^ K ) )  =  ( `  { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } ) )
64, 5syl 14 . 2  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( phi `  ( P ^ K ) )  =  ( `  { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } ) )
7 nnm1nn0 9406 . . . . . 6  |-  ( K  e.  NN  ->  ( K  -  1 )  e.  NN0 )
8 nnexpcl 10769 . . . . . 6  |-  ( ( P  e.  NN  /\  ( K  -  1
)  e.  NN0 )  ->  ( P ^ ( K  -  1 ) )  e.  NN )
91, 7, 8syl2an 289 . . . . 5  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( P ^ ( K  - 
1 ) )  e.  NN )
109nncnd 9120 . . . 4  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( P ^ ( K  - 
1 ) )  e.  CC )
111nncnd 9120 . . . . 5  |-  ( P  e.  Prime  ->  P  e.  CC )
1211adantr 276 . . . 4  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  P  e.  CC )
13 ax-1cn 8088 . . . . 5  |-  1  e.  CC
14 subdi 8527 . . . . 5  |-  ( ( ( P ^ ( K  -  1 ) )  e.  CC  /\  P  e.  CC  /\  1  e.  CC )  ->  (
( P ^ ( K  -  1 ) )  x.  ( P  -  1 ) )  =  ( ( ( P ^ ( K  -  1 ) )  x.  P )  -  ( ( P ^
( K  -  1 ) )  x.  1 ) ) )
1513, 14mp3an3 1360 . . . 4  |-  ( ( ( P ^ ( K  -  1 ) )  e.  CC  /\  P  e.  CC )  ->  ( ( P ^
( K  -  1 ) )  x.  ( P  -  1 ) )  =  ( ( ( P ^ ( K  -  1 ) )  x.  P )  -  ( ( P ^ ( K  - 
1 ) )  x.  1 ) ) )
1610, 12, 15syl2anc 411 . . 3  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( P ^ ( K  -  1 ) )  x.  ( P  -  1 ) )  =  ( ( ( P ^ ( K  -  1 ) )  x.  P )  -  ( ( P ^
( K  -  1 ) )  x.  1 ) ) )
1710mulridd 8159 . . . 4  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( P ^ ( K  -  1 ) )  x.  1 )  =  ( P ^
( K  -  1 ) ) )
1817oveq2d 6016 . . 3  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( ( P ^
( K  -  1 ) )  x.  P
)  -  ( ( P ^ ( K  -  1 ) )  x.  1 ) )  =  ( ( ( P ^ ( K  -  1 ) )  x.  P )  -  ( P ^ ( K  -  1 ) ) ) )
19 phivalfi 12729 . . . . . . 7  |-  ( ( P ^ K )  e.  NN  ->  { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 }  e.  Fin )
204, 19syl 14 . . . . . 6  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 }  e.  Fin )
21 1zzd 9469 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  1  e.  ZZ )
22 prmz 12628 . . . . . . . . 9  |-  ( P  e.  Prime  ->  P  e.  ZZ )
23 zexpcl 10771 . . . . . . . . 9  |-  ( ( P  e.  ZZ  /\  K  e.  NN0 )  -> 
( P ^ K
)  e.  ZZ )
2422, 2, 23syl2an 289 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( P ^ K )  e.  ZZ )
2521, 24fzfigd 10648 . . . . . . 7  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
1 ... ( P ^ K ) )  e. 
Fin )
2622ad2antrr 488 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ( 1 ... ( P ^ K ) ) )  ->  P  e.  ZZ )
27 elfzelz 10217 . . . . . . . . . . 11  |-  ( x  e.  ( 1 ... ( P ^ K
) )  ->  x  e.  ZZ )
2827adantl 277 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ( 1 ... ( P ^ K ) ) )  ->  x  e.  ZZ )
29 0zd 9454 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ( 1 ... ( P ^ K ) ) )  ->  0  e.  ZZ )
3028, 29zsubcld 9570 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ( 1 ... ( P ^ K ) ) )  ->  ( x  -  0 )  e.  ZZ )
31 zdvdsdc 12318 . . . . . . . . 9  |-  ( ( P  e.  ZZ  /\  ( x  -  0
)  e.  ZZ )  -> DECID 
P  ||  ( x  -  0 ) )
3226, 30, 31syl2anc 411 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ( 1 ... ( P ^ K ) ) )  -> DECID  P  ||  ( x  -  0 ) )
3332ralrimiva 2603 . . . . . . 7  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  A. x  e.  ( 1 ... ( P ^ K ) )DECID  P 
||  ( x  - 
0 ) )
3425, 33ssfirab 7094 . . . . . 6  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  { x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  (
x  -  0 ) }  e.  Fin )
35 inrab 3476 . . . . . . 7  |-  ( { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 }  i^i  { x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  ( x  -  0 ) } )  =  { x  e.  ( 1 ... ( P ^ K ) )  |  ( ( x  gcd  ( P ^ K ) )  =  1  /\  P  ||  ( x  -  0
) ) }
36 rpexp 12670 . . . . . . . . . . . . . . . . 17  |-  ( ( P  e.  ZZ  /\  x  e.  ZZ  /\  K  e.  NN )  ->  (
( ( P ^ K )  gcd  x
)  =  1  <->  ( P  gcd  x )  =  1 ) )
3722, 36syl3an1 1304 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  Prime  /\  x  e.  ZZ  /\  K  e.  NN )  ->  (
( ( P ^ K )  gcd  x
)  =  1  <->  ( P  gcd  x )  =  1 ) )
38373expa 1227 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  x  e.  ZZ )  /\  K  e.  NN )  ->  ( ( ( P ^ K )  gcd  x )  =  1  <->  ( P  gcd  x )  =  1 ) )
3938an32s 568 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ZZ )  ->  ( ( ( P ^ K )  gcd  x )  =  1  <->  ( P  gcd  x )  =  1 ) )
40 simpr 110 . . . . . . . . . . . . . . . 16  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ZZ )  ->  x  e.  ZZ )
4124adantr 276 . . . . . . . . . . . . . . . 16  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ZZ )  ->  ( P ^ K )  e.  ZZ )
42 gcdcom 12489 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ZZ  /\  ( P ^ K )  e.  ZZ )  -> 
( x  gcd  ( P ^ K ) )  =  ( ( P ^ K )  gcd  x ) )
4340, 41, 42syl2anc 411 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ZZ )  ->  ( x  gcd  ( P ^ K ) )  =  ( ( P ^ K )  gcd  x ) )
4443eqeq1d 2238 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ZZ )  ->  ( ( x  gcd  ( P ^ K ) )  =  1  <->  ( ( P ^ K )  gcd  x )  =  1 ) )
45 coprm 12661 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  Prime  /\  x  e.  ZZ )  ->  ( -.  P  ||  x  <->  ( P  gcd  x )  =  1 ) )
4645adantlr 477 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ZZ )  ->  ( -.  P  ||  x  <->  ( P  gcd  x )  =  1 ) )
4739, 44, 463bitr4d 220 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ZZ )  ->  ( ( x  gcd  ( P ^ K ) )  =  1  <->  -.  P  ||  x
) )
48 zcn 9447 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ZZ  ->  x  e.  CC )
4948adantl 277 . . . . . . . . . . . . . . . 16  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ZZ )  ->  x  e.  CC )
5049subid1d 8442 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ZZ )  ->  ( x  - 
0 )  =  x )
5150breq2d 4094 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ZZ )  ->  ( P  ||  ( x  -  0
)  <->  P  ||  x ) )
5251notbid 671 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ZZ )  ->  ( -.  P  ||  ( x  -  0 )  <->  -.  P  ||  x
) )
5347, 52bitr4d 191 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ZZ )  ->  ( ( x  gcd  ( P ^ K ) )  =  1  <->  -.  P  ||  (
x  -  0 ) ) )
5427, 53sylan2 286 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ( 1 ... ( P ^ K ) ) )  ->  ( (
x  gcd  ( P ^ K ) )  =  1  <->  -.  P  ||  (
x  -  0 ) ) )
5554biimpd 144 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ( 1 ... ( P ^ K ) ) )  ->  ( (
x  gcd  ( P ^ K ) )  =  1  ->  -.  P  ||  ( x  -  0 ) ) )
56 imnan 694 . . . . . . . . . 10  |-  ( ( ( x  gcd  ( P ^ K ) )  =  1  ->  -.  P  ||  ( x  - 
0 ) )  <->  -.  (
( x  gcd  ( P ^ K ) )  =  1  /\  P  ||  ( x  -  0 ) ) )
5755, 56sylib 122 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ( 1 ... ( P ^ K ) ) )  ->  -.  (
( x  gcd  ( P ^ K ) )  =  1  /\  P  ||  ( x  -  0 ) ) )
5857ralrimiva 2603 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  A. x  e.  ( 1 ... ( P ^ K ) )  -.  ( ( x  gcd  ( P ^ K ) )  =  1  /\  P  ||  ( x  -  0
) ) )
59 rabeq0 3521 . . . . . . . 8  |-  ( { x  e.  ( 1 ... ( P ^ K ) )  |  ( ( x  gcd  ( P ^ K ) )  =  1  /\  P  ||  ( x  -  0 ) ) }  =  (/)  <->  A. x  e.  ( 1 ... ( P ^ K ) )  -.  ( ( x  gcd  ( P ^ K ) )  =  1  /\  P  ||  ( x  -  0
) ) )
6058, 59sylibr 134 . . . . . . 7  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  { x  e.  ( 1 ... ( P ^ K ) )  |  ( ( x  gcd  ( P ^ K ) )  =  1  /\  P  ||  ( x  -  0
) ) }  =  (/) )
6135, 60eqtrid 2274 . . . . . 6  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( { x  e.  (
1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 }  i^i  { x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  ( x  -  0 ) } )  =  (/) )
62 hashun 11022 . . . . . 6  |-  ( ( { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 }  e.  Fin  /\  {
x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  ( x  -  0 ) }  e.  Fin  /\  ( { x  e.  (
1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 }  i^i  { x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  ( x  -  0 ) } )  =  (/) )  -> 
( `  ( { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 }  u.  { x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  (
x  -  0 ) } ) )  =  ( ( `  {
x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } )  +  ( `  {
x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  ( x  -  0 ) } ) ) )
6320, 34, 61, 62syl3anc 1271 . . . . 5  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( `  ( { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 }  u.  { x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  (
x  -  0 ) } ) )  =  ( ( `  {
x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } )  +  ( `  {
x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  ( x  -  0 ) } ) ) )
64 unrab 3475 . . . . . . . 8  |-  ( { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 }  u.  { x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  ( x  -  0 ) } )  =  { x  e.  ( 1 ... ( P ^ K ) )  |  ( ( x  gcd  ( P ^ K ) )  =  1  \/  P  ||  ( x  -  0
) ) }
6554biimprd 158 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ( 1 ... ( P ^ K ) ) )  ->  ( -.  P  ||  ( x  - 
0 )  ->  (
x  gcd  ( P ^ K ) )  =  1 ) )
66 con1dc 861 . . . . . . . . . . . 12  |-  (DECID  P  ||  ( x  -  0
)  ->  ( ( -.  P  ||  ( x  -  0 )  -> 
( x  gcd  ( P ^ K ) )  =  1 )  -> 
( -.  ( x  gcd  ( P ^ K ) )  =  1  ->  P  ||  (
x  -  0 ) ) ) )
6732, 65, 66sylc 62 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ( 1 ... ( P ^ K ) ) )  ->  ( -.  ( x  gcd  ( P ^ K ) )  =  1  ->  P  ||  ( x  -  0 ) ) )
6824adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ( 1 ... ( P ^ K ) ) )  ->  ( P ^ K )  e.  ZZ )
6928, 68gcdcld 12484 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ( 1 ... ( P ^ K ) ) )  ->  ( x  gcd  ( P ^ K
) )  e.  NN0 )
7069nn0zd 9563 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ( 1 ... ( P ^ K ) ) )  ->  ( x  gcd  ( P ^ K
) )  e.  ZZ )
71 1zzd 9469 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ( 1 ... ( P ^ K ) ) )  ->  1  e.  ZZ )
72 zdceq 9518 . . . . . . . . . . . . 13  |-  ( ( ( x  gcd  ( P ^ K ) )  e.  ZZ  /\  1  e.  ZZ )  -> DECID  ( x  gcd  ( P ^ K ) )  =  1 )
7370, 71, 72syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ( 1 ... ( P ^ K ) ) )  -> DECID  ( x  gcd  ( P ^ K ) )  =  1 )
74 dfordc 897 . . . . . . . . . . . 12  |-  (DECID  ( x  gcd  ( P ^ K ) )  =  1  ->  ( (
( x  gcd  ( P ^ K ) )  =  1  \/  P  ||  ( x  -  0 ) )  <->  ( -.  ( x  gcd  ( P ^ K ) )  =  1  ->  P  ||  ( x  -  0 ) ) ) )
7573, 74syl 14 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ( 1 ... ( P ^ K ) ) )  ->  ( (
( x  gcd  ( P ^ K ) )  =  1  \/  P  ||  ( x  -  0 ) )  <->  ( -.  ( x  gcd  ( P ^ K ) )  =  1  ->  P  ||  ( x  -  0 ) ) ) )
7667, 75mpbird 167 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ( 1 ... ( P ^ K ) ) )  ->  ( (
x  gcd  ( P ^ K ) )  =  1  \/  P  ||  ( x  -  0
) ) )
7776ralrimiva 2603 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  A. x  e.  ( 1 ... ( P ^ K ) ) ( ( x  gcd  ( P ^ K ) )  =  1  \/  P  ||  ( x  -  0 ) ) )
78 rabid2 2708 . . . . . . . . 9  |-  ( ( 1 ... ( P ^ K ) )  =  { x  e.  ( 1 ... ( P ^ K ) )  |  ( ( x  gcd  ( P ^ K ) )  =  1  \/  P  ||  ( x  -  0
) ) }  <->  A. x  e.  ( 1 ... ( P ^ K ) ) ( ( x  gcd  ( P ^ K ) )  =  1  \/  P  ||  ( x  -  0 ) ) )
7977, 78sylibr 134 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
1 ... ( P ^ K ) )  =  { x  e.  ( 1 ... ( P ^ K ) )  |  ( ( x  gcd  ( P ^ K ) )  =  1  \/  P  ||  ( x  -  0
) ) } )
8064, 79eqtr4id 2281 . . . . . . 7  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( { x  e.  (
1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 }  u.  { x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  ( x  -  0 ) } )  =  ( 1 ... ( P ^ K ) ) )
8180fveq2d 5630 . . . . . 6  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( `  ( { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 }  u.  { x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  (
x  -  0 ) } ) )  =  ( `  ( 1 ... ( P ^ K
) ) ) )
824nnnn0d 9418 . . . . . . 7  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( P ^ K )  e. 
NN0 )
83 hashfz1 11000 . . . . . . 7  |-  ( ( P ^ K )  e.  NN0  ->  ( `  (
1 ... ( P ^ K ) ) )  =  ( P ^ K ) )
8482, 83syl 14 . . . . . 6  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( `  ( 1 ... ( P ^ K ) ) )  =  ( P ^ K ) )
85 expm1t 10784 . . . . . . 7  |-  ( ( P  e.  CC  /\  K  e.  NN )  ->  ( P ^ K
)  =  ( ( P ^ ( K  -  1 ) )  x.  P ) )
8611, 85sylan 283 . . . . . 6  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( P ^ K )  =  ( ( P ^
( K  -  1 ) )  x.  P
) )
8781, 84, 863eqtrd 2266 . . . . 5  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( `  ( { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 }  u.  { x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  (
x  -  0 ) } ) )  =  ( ( P ^
( K  -  1 ) )  x.  P
) )
88 hashcl 10998 . . . . . . . 8  |-  ( { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 }  e.  Fin  ->  ( `  { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } )  e.  NN0 )
8920, 88syl 14 . . . . . . 7  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( `  { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } )  e.  NN0 )
9089nn0cnd 9420 . . . . . 6  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( `  { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } )  e.  CC )
911adantr 276 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  P  e.  NN )
92 nn0uz 9753 . . . . . . . . . . 11  |-  NN0  =  ( ZZ>= `  0 )
93 1m1e0 9175 . . . . . . . . . . . 12  |-  ( 1  -  1 )  =  0
9493fveq2i 5629 . . . . . . . . . . 11  |-  ( ZZ>= `  ( 1  -  1 ) )  =  (
ZZ>= `  0 )
9592, 94eqtr4i 2253 . . . . . . . . . 10  |-  NN0  =  ( ZZ>= `  ( 1  -  1 ) )
9682, 95eleqtrdi 2322 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( P ^ K )  e.  ( ZZ>= `  ( 1  -  1 ) ) )
97 0zd 9454 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  0  e.  ZZ )
9891, 21, 96, 97hashdvds 12738 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( `  { x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  (
x  -  0 ) } )  =  ( ( |_ `  (
( ( P ^ K )  -  0 )  /  P ) )  -  ( |_
`  ( ( ( 1  -  1 )  -  0 )  /  P ) ) ) )
994nncnd 9120 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( P ^ K )  e.  CC )
10099subid1d 8442 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( P ^ K
)  -  0 )  =  ( P ^ K ) )
101100oveq1d 6015 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( ( P ^ K )  -  0 )  /  P )  =  ( ( P ^ K )  /  P ) )
10291nnap0d 9152 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  P #  0 )
103 nnz 9461 . . . . . . . . . . . . . 14  |-  ( K  e.  NN  ->  K  e.  ZZ )
104103adantl 277 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  K  e.  ZZ )
10512, 102, 104expm1apd 10900 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( P ^ ( K  - 
1 ) )  =  ( ( P ^ K )  /  P
) )
106101, 105eqtr4d 2265 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( ( P ^ K )  -  0 )  /  P )  =  ( P ^
( K  -  1 ) ) )
107106fveq2d 5630 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( |_ `  ( ( ( P ^ K )  -  0 )  /  P ) )  =  ( |_ `  ( P ^ ( K  - 
1 ) ) ) )
1089nnzd 9564 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( P ^ ( K  - 
1 ) )  e.  ZZ )
109 flid 10499 . . . . . . . . . . 11  |-  ( ( P ^ ( K  -  1 ) )  e.  ZZ  ->  ( |_ `  ( P ^
( K  -  1 ) ) )  =  ( P ^ ( K  -  1 ) ) )
110108, 109syl 14 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( |_ `  ( P ^
( K  -  1 ) ) )  =  ( P ^ ( K  -  1 ) ) )
111107, 110eqtrd 2262 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( |_ `  ( ( ( P ^ K )  -  0 )  /  P ) )  =  ( P ^ ( K  -  1 ) ) )
11293oveq1i 6010 . . . . . . . . . . . . . 14  |-  ( ( 1  -  1 )  -  0 )  =  ( 0  -  0 )
113 0m0e0 9218 . . . . . . . . . . . . . 14  |-  ( 0  -  0 )  =  0
114112, 113eqtri 2250 . . . . . . . . . . . . 13  |-  ( ( 1  -  1 )  -  0 )  =  0
115114oveq1i 6010 . . . . . . . . . . . 12  |-  ( ( ( 1  -  1 )  -  0 )  /  P )  =  ( 0  /  P
)
11612, 102div0apd 8930 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
0  /  P )  =  0 )
117115, 116eqtrid 2274 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( ( 1  -  1 )  -  0 )  /  P )  =  0 )
118117fveq2d 5630 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( |_ `  ( ( ( 1  -  1 )  -  0 )  /  P ) )  =  ( |_ `  0
) )
119 0z 9453 . . . . . . . . . . 11  |-  0  e.  ZZ
120 flid 10499 . . . . . . . . . . 11  |-  ( 0  e.  ZZ  ->  ( |_ `  0 )  =  0 )
121119, 120ax-mp 5 . . . . . . . . . 10  |-  ( |_
`  0 )  =  0
122118, 121eqtrdi 2278 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( |_ `  ( ( ( 1  -  1 )  -  0 )  /  P ) )  =  0 )
123111, 122oveq12d 6018 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( |_ `  (
( ( P ^ K )  -  0 )  /  P ) )  -  ( |_
`  ( ( ( 1  -  1 )  -  0 )  /  P ) ) )  =  ( ( P ^ ( K  - 
1 ) )  - 
0 ) )
12410subid1d 8442 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( P ^ ( K  -  1 ) )  -  0 )  =  ( P ^
( K  -  1 ) ) )
12598, 123, 1243eqtrd 2266 . . . . . . 7  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( `  { x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  (
x  -  0 ) } )  =  ( P ^ ( K  -  1 ) ) )
126125oveq2d 6016 . . . . . 6  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( `  { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } )  +  ( `  {
x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  ( x  -  0 ) } ) )  =  ( ( `  { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } )  +  ( P ^ ( K  - 
1 ) ) ) )
12790, 10, 126comraddd 8299 . . . . 5  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( `  { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } )  +  ( `  {
x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  ( x  -  0 ) } ) )  =  ( ( P ^ ( K  -  1 ) )  +  ( `  {
x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } ) ) )
12863, 87, 1273eqtr3rd 2271 . . . 4  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( P ^ ( K  -  1 ) )  +  ( `  {
x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } ) )  =  ( ( P ^ ( K  -  1 ) )  x.  P ) )
12910, 12mulcld 8163 . . . . 5  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( P ^ ( K  -  1 ) )  x.  P )  e.  CC )
130129, 10, 90subaddd 8471 . . . 4  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( ( ( P ^ ( K  - 
1 ) )  x.  P )  -  ( P ^ ( K  - 
1 ) ) )  =  ( `  {
x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } )  <-> 
( ( P ^
( K  -  1 ) )  +  ( `  { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } ) )  =  ( ( P ^ ( K  -  1 ) )  x.  P ) ) )
131128, 130mpbird 167 . . 3  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( ( P ^
( K  -  1 ) )  x.  P
)  -  ( P ^ ( K  - 
1 ) ) )  =  ( `  {
x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } ) )
13216, 18, 1313eqtrrd 2267 . 2  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( `  { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } )  =  ( ( P ^ ( K  -  1 ) )  x.  ( P  - 
1 ) ) )
1336, 132eqtrd 2262 1  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( phi `  ( P ^ K ) )  =  ( ( P ^
( K  -  1 ) )  x.  ( P  -  1 ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713  DECID wdc 839    = wceq 1395    e. wcel 2200   A.wral 2508   {crab 2512    u. cun 3195    i^i cin 3196   (/)c0 3491   class class class wbr 4082   ` cfv 5317  (class class class)co 6000   Fincfn 6885   CCcc 7993   0cc0 7995   1c1 7996    + caddc 7998    x. cmul 8000    - cmin 8313    / cdiv 8815   NNcn 9106   NN0cn0 9365   ZZcz 9442   ZZ>=cuz 9718   ...cfz 10200   |_cfl 10483   ^cexp 10755  ♯chash 10992    || cdvds 12293    gcd cgcd 12469   Primecprime 12624   phicphi 12726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-frec 6535  df-1o 6560  df-2o 6561  df-oadd 6564  df-er 6678  df-en 6886  df-dom 6887  df-fin 6888  df-sup 7147  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-fz 10201  df-fzo 10335  df-fl 10485  df-mod 10540  df-seqfrec 10665  df-exp 10756  df-ihash 10993  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-dvds 12294  df-gcd 12470  df-prm 12625  df-phi 12728
This theorem is referenced by:  phiprm  12740
  Copyright terms: Public domain W3C validator