ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbexa Unicode version

Theorem csbexa 4213
Description: The existence of proper substitution into a class. (Contributed by NM, 7-Aug-2007.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Hypotheses
Ref Expression
csbexa.1  |-  A  e. 
_V
csbexa.2  |-  B  e. 
_V
Assertion
Ref Expression
csbexa  |-  [_ A  /  x ]_ B  e. 
_V

Proof of Theorem csbexa
StepHypRef Expression
1 csbexa.1 . . 3  |-  A  e. 
_V
2 csbexga 4212 . . 3  |-  ( ( A  e.  _V  /\  A. x  B  e.  _V )  ->  [_ A  /  x ]_ B  e.  _V )
31, 2mpan 424 . 2  |-  ( A. x  B  e.  _V  ->  [_ A  /  x ]_ B  e.  _V )
4 csbexa.2 . 2  |-  B  e. 
_V
53, 4mpg 1497 1  |-  [_ A  /  x ]_ B  e. 
_V
Colors of variables: wff set class
Syntax hints:   A.wal 1393    e. wcel 2200   _Vcvv 2799   [_csb 3124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-sbc 3029  df-csb 3125
This theorem is referenced by:  dfmpo  6375  rhmex  14129  fnpsr  14639  fnmpl  14665
  Copyright terms: Public domain W3C validator