ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbexa Unicode version

Theorem csbexa 4111
Description: The existence of proper substitution into a class. (Contributed by NM, 7-Aug-2007.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Hypotheses
Ref Expression
csbexa.1  |-  A  e. 
_V
csbexa.2  |-  B  e. 
_V
Assertion
Ref Expression
csbexa  |-  [_ A  /  x ]_ B  e. 
_V

Proof of Theorem csbexa
StepHypRef Expression
1 csbexa.1 . . 3  |-  A  e. 
_V
2 csbexga 4110 . . 3  |-  ( ( A  e.  _V  /\  A. x  B  e.  _V )  ->  [_ A  /  x ]_ B  e.  _V )
31, 2mpan 421 . 2  |-  ( A. x  B  e.  _V  ->  [_ A  /  x ]_ B  e.  _V )
4 csbexa.2 . 2  |-  B  e. 
_V
53, 4mpg 1439 1  |-  [_ A  /  x ]_ B  e. 
_V
Colors of variables: wff set class
Syntax hints:   A.wal 1341    e. wcel 2136   _Vcvv 2726   [_csb 3045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-sbc 2952  df-csb 3046
This theorem is referenced by:  dfmpo  6191
  Copyright terms: Public domain W3C validator