ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbexga Unicode version

Theorem csbexga 3988
Description: The existence of proper substitution into a class. (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
csbexga  |-  ( ( A  e.  V  /\  A. x  B  e.  W
)  ->  [_ A  /  x ]_ B  e.  _V )

Proof of Theorem csbexga
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-csb 2948 . 2  |-  [_ A  /  x ]_ B  =  { y  |  [. A  /  x ]. y  e.  B }
2 abid2 2215 . . . . . . 7  |-  { y  |  y  e.  B }  =  B
3 elex 2644 . . . . . . 7  |-  ( B  e.  W  ->  B  e.  _V )
42, 3syl5eqel 2181 . . . . . 6  |-  ( B  e.  W  ->  { y  |  y  e.  B }  e.  _V )
54alimi 1396 . . . . 5  |-  ( A. x  B  e.  W  ->  A. x { y  |  y  e.  B }  e.  _V )
6 spsbc 2865 . . . . 5  |-  ( A  e.  V  ->  ( A. x { y  |  y  e.  B }  e.  _V  ->  [. A  /  x ]. { y  |  y  e.  B }  e.  _V ) )
75, 6syl5 32 . . . 4  |-  ( A  e.  V  ->  ( A. x  B  e.  W  ->  [. A  /  x ]. { y  |  y  e.  B }  e.  _V ) )
87imp 123 . . 3  |-  ( ( A  e.  V  /\  A. x  B  e.  W
)  ->  [. A  /  x ]. { y  |  y  e.  B }  e.  _V )
9 nfcv 2235 . . . . 5  |-  F/_ x _V
109sbcabel 2934 . . . 4  |-  ( A  e.  V  ->  ( [. A  /  x ]. { y  |  y  e.  B }  e.  _V 
<->  { y  |  [. A  /  x ]. y  e.  B }  e.  _V ) )
1110adantr 271 . . 3  |-  ( ( A  e.  V  /\  A. x  B  e.  W
)  ->  ( [. A  /  x ]. {
y  |  y  e.  B }  e.  _V  <->  { y  |  [. A  /  x ]. y  e.  B }  e.  _V ) )
128, 11mpbid 146 . 2  |-  ( ( A  e.  V  /\  A. x  B  e.  W
)  ->  { y  |  [. A  /  x ]. y  e.  B }  e.  _V )
131, 12syl5eqel 2181 1  |-  ( ( A  e.  V  /\  A. x  B  e.  W
)  ->  [_ A  /  x ]_ B  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1294    e. wcel 1445   {cab 2081   _Vcvv 2633   [.wsbc 2854   [_csb 2947
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077
This theorem depends on definitions:  df-bi 116  df-tru 1299  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-v 2635  df-sbc 2855  df-csb 2948
This theorem is referenced by:  csbexa  3989
  Copyright terms: Public domain W3C validator