ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbexga Unicode version

Theorem csbexga 4133
Description: The existence of proper substitution into a class. (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
csbexga  |-  ( ( A  e.  V  /\  A. x  B  e.  W
)  ->  [_ A  /  x ]_ B  e.  _V )

Proof of Theorem csbexga
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-csb 3060 . 2  |-  [_ A  /  x ]_ B  =  { y  |  [. A  /  x ]. y  e.  B }
2 abid2 2298 . . . . . . 7  |-  { y  |  y  e.  B }  =  B
3 elex 2750 . . . . . . 7  |-  ( B  e.  W  ->  B  e.  _V )
42, 3eqeltrid 2264 . . . . . 6  |-  ( B  e.  W  ->  { y  |  y  e.  B }  e.  _V )
54alimi 1455 . . . . 5  |-  ( A. x  B  e.  W  ->  A. x { y  |  y  e.  B }  e.  _V )
6 spsbc 2976 . . . . 5  |-  ( A  e.  V  ->  ( A. x { y  |  y  e.  B }  e.  _V  ->  [. A  /  x ]. { y  |  y  e.  B }  e.  _V ) )
75, 6syl5 32 . . . 4  |-  ( A  e.  V  ->  ( A. x  B  e.  W  ->  [. A  /  x ]. { y  |  y  e.  B }  e.  _V ) )
87imp 124 . . 3  |-  ( ( A  e.  V  /\  A. x  B  e.  W
)  ->  [. A  /  x ]. { y  |  y  e.  B }  e.  _V )
9 nfcv 2319 . . . . 5  |-  F/_ x _V
109sbcabel 3046 . . . 4  |-  ( A  e.  V  ->  ( [. A  /  x ]. { y  |  y  e.  B }  e.  _V 
<->  { y  |  [. A  /  x ]. y  e.  B }  e.  _V ) )
1110adantr 276 . . 3  |-  ( ( A  e.  V  /\  A. x  B  e.  W
)  ->  ( [. A  /  x ]. {
y  |  y  e.  B }  e.  _V  <->  { y  |  [. A  /  x ]. y  e.  B }  e.  _V ) )
128, 11mpbid 147 . 2  |-  ( ( A  e.  V  /\  A. x  B  e.  W
)  ->  { y  |  [. A  /  x ]. y  e.  B }  e.  _V )
131, 12eqeltrid 2264 1  |-  ( ( A  e.  V  /\  A. x  B  e.  W
)  ->  [_ A  /  x ]_ B  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1351    e. wcel 2148   {cab 2163   _Vcvv 2739   [.wsbc 2964   [_csb 3059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-sbc 2965  df-csb 3060
This theorem is referenced by:  csbexa  4134  prdsex  12723  imasex  12731
  Copyright terms: Public domain W3C validator