ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbexga Unicode version

Theorem csbexga 4211
Description: The existence of proper substitution into a class. (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
csbexga  |-  ( ( A  e.  V  /\  A. x  B  e.  W
)  ->  [_ A  /  x ]_ B  e.  _V )

Proof of Theorem csbexga
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-csb 3125 . 2  |-  [_ A  /  x ]_ B  =  { y  |  [. A  /  x ]. y  e.  B }
2 abid2 2350 . . . . . . 7  |-  { y  |  y  e.  B }  =  B
3 elex 2811 . . . . . . 7  |-  ( B  e.  W  ->  B  e.  _V )
42, 3eqeltrid 2316 . . . . . 6  |-  ( B  e.  W  ->  { y  |  y  e.  B }  e.  _V )
54alimi 1501 . . . . 5  |-  ( A. x  B  e.  W  ->  A. x { y  |  y  e.  B }  e.  _V )
6 spsbc 3040 . . . . 5  |-  ( A  e.  V  ->  ( A. x { y  |  y  e.  B }  e.  _V  ->  [. A  /  x ]. { y  |  y  e.  B }  e.  _V ) )
75, 6syl5 32 . . . 4  |-  ( A  e.  V  ->  ( A. x  B  e.  W  ->  [. A  /  x ]. { y  |  y  e.  B }  e.  _V ) )
87imp 124 . . 3  |-  ( ( A  e.  V  /\  A. x  B  e.  W
)  ->  [. A  /  x ]. { y  |  y  e.  B }  e.  _V )
9 nfcv 2372 . . . . 5  |-  F/_ x _V
109sbcabel 3111 . . . 4  |-  ( A  e.  V  ->  ( [. A  /  x ]. { y  |  y  e.  B }  e.  _V 
<->  { y  |  [. A  /  x ]. y  e.  B }  e.  _V ) )
1110adantr 276 . . 3  |-  ( ( A  e.  V  /\  A. x  B  e.  W
)  ->  ( [. A  /  x ]. {
y  |  y  e.  B }  e.  _V  <->  { y  |  [. A  /  x ]. y  e.  B }  e.  _V ) )
128, 11mpbid 147 . 2  |-  ( ( A  e.  V  /\  A. x  B  e.  W
)  ->  { y  |  [. A  /  x ]. y  e.  B }  e.  _V )
131, 12eqeltrid 2316 1  |-  ( ( A  e.  V  /\  A. x  B  e.  W
)  ->  [_ A  /  x ]_ B  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1393    e. wcel 2200   {cab 2215   _Vcvv 2799   [.wsbc 3028   [_csb 3124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-sbc 3029  df-csb 3125
This theorem is referenced by:  csbexa  4212  prdsex  13297  imasex  13333
  Copyright terms: Public domain W3C validator